gpflow#
Modules#
- gpflow.base
- gpflow.conditionals
- gpflow.config
- gpflow.covariances
- gpflow.expectations
- gpflow.experimental
- gpflow.functions
- gpflow.inducing_variables
- gpflow.kernels
- gpflow.kullback_leiblers
- gpflow.likelihoods
- gpflow.logdensities
- gpflow.models
- gpflow.monitor
- gpflow.optimizers
- gpflow.posteriors
- gpflow.probability_distributions
- gpflow.quadrature
- gpflow.type_flags
- gpflow.utilities
Classes#
gpflow.Module#
gpflow.Parameter#
- class gpflow.Parameter(value, *, transform=None, prior=None, prior_on=None, trainable=None, dtype=None, name=None, unconstrained_shape=None, constrained_shape=None, shape=None)[source]#
Bases:
TransformedVariable
- Parameters:
value (
Union
[int
,float
,Sequence
[Any
],ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –transform (
Optional
[Bijector
]) –prior (
Optional
[Distribution
]) –prior_on (
Union
[str
,PriorOn
,None
]) –trainable (
Optional
[bool
]) –dtype (
Union
[dtype
,DType
,None
]) –name (
Optional
[str
]) –unconstrained_shape (
Optional
[Sequence
[Optional
[int
]]]) –constrained_shape (
Optional
[Sequence
[Optional
[int
]]]) –shape (
Optional
[Sequence
[Optional
[int
]]]) –
- assign(value, use_locking=False, name=None, read_value=True)[source]#
Assigns constrained value to the unconstrained parameter’s variable. It passes constrained value through parameter’s transform first.
Example:
a = Parameter(2.0, transform=tfp.bijectors.Softplus()) b = Parameter(3.0) a.assign(4.0) # `a` parameter to `2.0` value. a.assign(tf.constant(5.0)) # `a` parameter to `5.0` value. a.assign(b) # `a` parameter to constrained value of `b`.
- Parameters:
value (
Union
[int
,float
,Sequence
[Any
],ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) – Constrained tensor-like value.use_locking (
bool
) – If True, use locking during the assignment.name (
Optional
[str
]) – The name of the operation to be created.read_value (
bool
) – if True, will return something which evaluates to the new value of the variable; if False will return the assign op.
- Return type:
Tensor
- log_prior_density()[source]#
Log of the prior probability density of the constrained variable.
- Return type:
Tensor
- Returns:
return has shape [].
- property trainable: bool#
True if this instance is trainable, else False.
This attribute cannot be set directly. Use
gpflow.set_trainable()
.- Return type:
bool
Functions#
gpflow.default_float#
gpflow.default_int#
gpflow.default_jitter#
gpflow.set_trainable#
- gpflow.set_trainable(model, flag)[source]#
Set trainable flag for all
tf.Variable
s andgpflow.Parameter
s in atf.Module
or collection oftf.Module
s.- Parameters:
model (
Union
[Module
,Iterable
[Module
]]) –flag (
bool
) –
- Return type:
None