Source code for gpflow.utilities.misc
# Copyright 2017-2021 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Iterable, List, Optional, Union
import tensorflow as tf
import tensorflow_probability as tfp
from ..base import TensorData
from ..config import default_float, default_int
from ..experimental.check_shapes import check_shapes
__all__ = [
"is_variable",
"set_trainable",
"to_default_float",
"to_default_int",
"training_loop",
]
[docs]@check_shapes(
"x: [any...]",
"return: [any...]",
)
def to_default_int(x: TensorData) -> tf.Tensor:
return tf.cast(x, dtype=default_int())
[docs]@check_shapes(
"x: [any...]",
"return: [any...]",
)
def to_default_float(x: TensorData) -> tf.Tensor:
if not tf.is_tensor(x):
# workaround for the fact that tf.cast(, dtype=tf.float64) doesn't directly convert
# python floats to tf.float64 tensors. Instead, it converts the python float to a
# tf.float32 tensor, and then casts that to be tf.float64. This results in a loss
# of precision. See https://github.com/tensorflow/tensorflow/issues/57779 for more context.
return tf.convert_to_tensor(x, default_float())
return tf.cast(x, dtype=default_float())
[docs]def set_trainable(model: Union[tf.Module, Iterable[tf.Module]], flag: bool) -> None:
"""
Set trainable flag for all :class:`tf.Variable`\ s and :class:`gpflow.Parameter`\ s in a
:class:`tf.Module` or collection of :class:`tf.Module`\ s.
"""
modules = [model] if isinstance(model, tf.Module) else model
for mod in modules:
for variable in mod.variables:
variable._trainable = flag
[docs]def is_variable(t: TensorData) -> bool:
"""
Returns whether the `t` is a TensorFlow variable.
"""
return isinstance(t, (tf.Variable, tfp.util.TransformedVariable))
[docs]def training_loop(
closure: Callable[[], tf.Tensor],
optimizer: Optional[tf.optimizers.Optimizer] = None,
var_list: Optional[List[tf.Variable]] = None,
maxiter: int = 1_000,
compile: bool = False,
) -> None:
"""
Simple generic training loop. At each iteration uses a GradientTape to compute
the gradients of a loss function with respect to a set of variables.
:param closure: Callable that constructs a loss function based on data and model being trained
:param optimizer: tf.optimizers or tf.keras.optimizers that updates variables by applying the
corresponding loss gradients. Adam is a default optimizer with default settings.
:param var_list: List of model variables to be learnt during training
:param maxiter: Maximum number of
:return:
"""
safe_optimizer = tf.optimizers.Adam() if optimizer is None else optimizer
safe_var_list = [] if var_list is None else var_list
def optimization_step() -> None:
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(safe_var_list)
loss = closure()
grads = tape.gradient(loss, safe_var_list)
safe_optimizer.apply_gradients(zip(grads, safe_var_list))
if compile:
optimization_step = tf.function(optimization_step)
for _ in range(maxiter):
optimization_step()