Source code for gpflow.inducing_variables.inducing_variables
# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Optional
import tensorflow as tf
import tensorflow_probability as tfp
from check_shapes import Shape, check_shapes
from deprecated import deprecated
from ..base import Module, Parameter, TensorData, TensorType
from ..utilities import positive
[docs]class InducingVariables(Module, abc.ABC):
"""
Abstract base class for inducing variables.
"""
@property
@abc.abstractmethod
def num_inducing(self) -> tf.Tensor:
"""
Returns the number of inducing variables, relevant for example to determine the size of the
variational distribution.
"""
raise NotImplementedError
@deprecated(
reason="len(iv) should return an `int`, but this actually returns a `tf.Tensor`."
" Use `iv.num_inducing` instead."
)
def __len__(self) -> tf.Tensor:
return self.num_inducing
@property
@abc.abstractmethod
def shape(self) -> Shape:
"""
Return the shape of these inducing variables.
Shape should be some variation of ``[M, D, P]``, where:
* ``M`` is the number of inducing variables.
* ``D`` is the number of input dimensions.
* ``P`` is the number of output dimensions (1 if this is not a multi-output inducing
variable).
"""
[docs]class InducingPointsBase(InducingVariables):
@check_shapes(
"Z: [M, D]",
)
def __init__(self, Z: TensorData, name: Optional[str] = None):
"""
:param Z: The initial positions of the inducing points.
"""
super().__init__(name=name)
if not isinstance(Z, (tf.Variable, tfp.util.TransformedVariable)):
Z = Parameter(Z)
self.Z = Z
@property # type: ignore[misc] # mypy doesn't like decorated properties.
@check_shapes(
"return: []",
)
def num_inducing(self) -> Optional[tf.Tensor]:
return tf.shape(self.Z)[0]
@property
def shape(self) -> Shape:
shape = self.Z.shape
if not shape:
return None
return tuple(shape) + (1,)
[docs]class InducingPoints(InducingPointsBase):
"""
Real-space inducing points
"""
[docs]class Multiscale(InducingPointsBase):
r"""
Multi-scale inducing variables
Originally proposed in :cite:t:`NIPS2009_3876`.
"""
@check_shapes(
"Z: [M, D]",
"scales: [M, D]",
)
def __init__(self, Z: TensorData, scales: TensorData):
super().__init__(Z)
# Multi-scale inducing_variable widths (std. dev. of Gaussian)
self.scales = Parameter(scales, transform=positive())
@staticmethod
@check_shapes(
"A: [N, D]",
"B: [M, D]",
"sc: [broadcast N, broadcast M, D]",
"return: [N, M]",
)
def _cust_square_dist(A: TensorType, B: TensorType, sc: TensorType) -> tf.Tensor:
"""
Custom version of _square_dist that allows sc to provide per-datapoint length
scales.
"""
return tf.reduce_sum(tf.square((tf.expand_dims(A, 1) - tf.expand_dims(B, 0)) / sc), 2)