Source code for gpflow.conditionals.uncertain_conditionals

# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import tensorflow as tf
from check_shapes import check_shapes

from .. import covariances, mean_functions
from ..base import MeanAndVariance
from ..config import default_float, default_jitter
from ..expectations import expectation
from ..inducing_variables import InducingPoints, InducingVariables
from ..kernels import Kernel
from ..probability_distributions import Gaussian


[docs] @check_shapes( "Xnew_mu: [batch..., N, Din]", "Xnew_var: [batch..., N, n, n]", "inducing_variable: [M, Din, broadcast t]", "q_mu: [M, Dout]", "q_sqrt: [t, M, M]", "return[0]: [batch..., N, Dout]", "return[1]: [batch..., N, t, t] if full_output_cov", "return[1]: [batch..., N, Dout] if not full_output_cov", ) def uncertain_conditional( Xnew_mu: tf.Tensor, Xnew_var: tf.Tensor, inducing_variable: InducingVariables, kernel: Kernel, q_mu: tf.Tensor, q_sqrt: tf.Tensor, *, mean_function: Optional[mean_functions.MeanFunction] = None, full_output_cov: bool = False, full_cov: bool = False, white: bool = False, ) -> MeanAndVariance: """ Calculates the conditional for uncertain inputs Xnew, p(Xnew) = N(Xnew_mu, Xnew_var). See ``conditional`` documentation for further reference. :param Xnew_mu: mean of the inputs :param Xnew_var: covariance matrix of the inputs :param inducing_variable: gpflow.InducingVariable object, only InducingPoints is supported :param kernel: gpflow kernel object. :param q_mu: mean inducing points :param q_sqrt: cholesky of the covariance matrix of the inducing points :param full_output_cov: boolean wheter to compute covariance between output dimension. Influences the shape of return value ``fvar``. Default is False :param white: boolean whether to use whitened representation. Default is False. :return fmean, fvar: mean and covariance of the conditional """ if not isinstance(inducing_variable, InducingPoints): raise NotImplementedError if full_cov: raise NotImplementedError( "uncertain_conditional() currently does not support full_cov=True" ) pXnew = Gaussian(Xnew_mu, Xnew_var) num_data = tf.shape(Xnew_mu)[0] # number of new inputs (N) num_ind, num_func = tf.unstack( tf.shape(q_mu), num=2, axis=0 ) # number of inducing points (M), output dimension (D) q_sqrt_r = tf.linalg.band_part(q_sqrt, -1, 0) # [D, M, M] eKuf = tf.transpose(expectation(pXnew, (kernel, inducing_variable))) # [M, N] (psi1) Kuu = covariances.Kuu(inducing_variable, kernel, jitter=default_jitter()) # [M, M] Luu = tf.linalg.cholesky(Kuu) # [M, M] if not white: q_mu = tf.linalg.triangular_solve(Luu, q_mu, lower=True) Luu_tiled = tf.tile( Luu[None, :, :], [num_func, 1, 1] ) # remove line once issue 216 is fixed q_sqrt_r = tf.linalg.triangular_solve(Luu_tiled, q_sqrt_r, lower=True) Li_eKuf = tf.linalg.triangular_solve(Luu, eKuf, lower=True) # [M, N] fmean = tf.linalg.matmul(Li_eKuf, q_mu, transpose_a=True) eKff = expectation(pXnew, kernel) # N (psi0) eKuffu = expectation( pXnew, (kernel, inducing_variable), (kernel, inducing_variable) ) # [N, M, M] (psi2) Luu_tiled = tf.tile( Luu[None, :, :], [num_data, 1, 1] ) # remove this line, once issue 216 is fixed Li_eKuffu = tf.linalg.triangular_solve(Luu_tiled, eKuffu, lower=True) Li_eKuffu_Lit = tf.linalg.triangular_solve( Luu_tiled, tf.linalg.adjoint(Li_eKuffu), lower=True ) # [N, M, M] cov = tf.linalg.matmul(q_sqrt_r, q_sqrt_r, transpose_b=True) # [D, M, M] if mean_function is None or isinstance(mean_function, mean_functions.Zero): e_related_to_mean = tf.zeros((num_data, num_func, num_func), dtype=default_float()) else: # Update mean: \mu(x) + m(x) fmean = fmean + expectation(pXnew, mean_function) # Calculate: m(x) m(x)^T + m(x) \mu(x)^T + \mu(x) m(x)^T, # where m(x) is the mean_function and \mu(x) is fmean e_mean_mean = expectation(pXnew, mean_function, mean_function) # [N, D, D] Lit_q_mu = tf.linalg.triangular_solve(Luu, q_mu, adjoint=True) e_mean_Kuf = expectation(pXnew, mean_function, (kernel, inducing_variable)) # [N, D, M] # einsum isn't able to infer the rank of e_mean_Kuf, hence we explicitly set the rank of the tensor: e_mean_Kuf = tf.reshape(e_mean_Kuf, [num_data, num_func, num_ind]) e_fmean_mean = tf.einsum("nqm,mz->nqz", e_mean_Kuf, Lit_q_mu) # [N, D, D] e_related_to_mean = e_fmean_mean + tf.linalg.adjoint(e_fmean_mean) + e_mean_mean if full_output_cov: fvar = ( tf.linalg.diag(tf.tile((eKff - tf.linalg.trace(Li_eKuffu_Lit))[:, None], [1, num_func])) + tf.linalg.diag(tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov)) + # tf.linalg.diag(tf.linalg.trace(tf.linalg.matmul(Li_eKuffu_Lit, cov))) + tf.einsum("ig,nij,jh->ngh", q_mu, Li_eKuffu_Lit, q_mu) - # tf.linalg.matmul(q_mu, tf.linalg.matmul(Li_eKuffu_Lit, q_mu), transpose_a=True) - fmean[:, :, None] * fmean[:, None, :] + e_related_to_mean ) else: fvar = ( (eKff - tf.linalg.trace(Li_eKuffu_Lit))[:, None] + tf.einsum("nij,dji->nd", Li_eKuffu_Lit, cov) + tf.einsum("ig,nij,jg->ng", q_mu, Li_eKuffu_Lit, q_mu) - fmean ** 2 + tf.linalg.diag_part(e_related_to_mean) ) return fmean, fvar