Source code for gpflow.models.gpr

# Copyright 2016-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import tensorflow as tf
from check_shapes import check_shapes, inherit_check_shapes

import gpflow

from .. import posteriors
from ..base import InputData, MeanAndVariance, RegressionData, TensorData
from ..kernels import Kernel
from ..likelihoods import Gaussian
from ..logdensities import multivariate_normal
from ..mean_functions import MeanFunction
from ..utilities import add_likelihood_noise_cov, assert_params_false
from .model import GPModel
from .training_mixins import InternalDataTrainingLossMixin
from .util import data_input_to_tensor


[docs] class GPR_deprecated(GPModel, InternalDataTrainingLossMixin): r""" Gaussian Process Regression. This is a vanilla implementation of GP regression with a Gaussian likelihood. Multiple columns of Y are treated independently. The log likelihood of this model is given by .. math:: \log p(Y \,|\, \mathbf f) = \mathcal N(Y \,|\, 0, \sigma_n^2 \mathbf{I}) To train the model, we maximise the log _marginal_ likelihood w.r.t. the likelihood variance and kernel hyperparameters theta. The marginal likelihood is found by integrating the likelihood over the prior, and has the form .. math:: \log p(Y \,|\, \sigma_n, \theta) = \mathcal N(Y \,|\, 0, \mathbf{K} + \sigma_n^2 \mathbf{I}) For a use example see :doc:`../../../../notebooks/getting_started/basic_usage`. """ @check_shapes( "data[0]: [N, D]", "data[1]: [N, P]", "noise_variance: []", ) def __init__( self, data: RegressionData, kernel: Kernel, mean_function: Optional[MeanFunction] = None, noise_variance: Optional[TensorData] = None, likelihood: Optional[Gaussian] = None, ): assert (noise_variance is None) or ( likelihood is None ), "Cannot set both `noise_variance` and `likelihood`." if likelihood is None: if noise_variance is None: noise_variance = 1.0 likelihood = gpflow.likelihoods.Gaussian(noise_variance) _, Y_data = data super().__init__(kernel, likelihood, mean_function, num_latent_gps=Y_data.shape[-1]) self.data = data_input_to_tensor(data) # type-ignore is because of changed method signature:
[docs] @inherit_check_shapes def maximum_log_likelihood_objective(self) -> tf.Tensor: # type: ignore[override] return self.log_marginal_likelihood()
[docs] @check_shapes( "return: []", ) def log_marginal_likelihood(self) -> tf.Tensor: r""" Computes the log marginal likelihood. .. math:: \log p(Y | \theta). """ X, Y = self.data K = self.kernel(X) ks = add_likelihood_noise_cov(K, self.likelihood, X) L = tf.linalg.cholesky(ks) m = self.mean_function(X) # [R,] log-likelihoods for each independent dimension of Y log_prob = multivariate_normal(Y, m, L) return tf.reduce_sum(log_prob)
[docs] @inherit_check_shapes def predict_f( self, Xnew: InputData, full_cov: bool = False, full_output_cov: bool = False ) -> MeanAndVariance: r""" This method computes predictions at X \in R^{N \x D} input points .. math:: p(F* | Y) where F* are points on the GP at new data points, Y are noisy observations at training data points. """ assert_params_false(self.predict_f, full_output_cov=full_output_cov) X, Y = self.data err = Y - self.mean_function(X) kmm = self.kernel(X) knn = self.kernel(Xnew, full_cov=full_cov) kmn = self.kernel(X, Xnew) kmm_plus_s = add_likelihood_noise_cov(kmm, self.likelihood, X) conditional = gpflow.conditionals.base_conditional f_mean_zero, f_var = conditional( kmn, kmm_plus_s, knn, err, full_cov=full_cov, white=False ) # [N, P], [N, P] or [P, N, N] f_mean = f_mean_zero + self.mean_function(Xnew) return f_mean, f_var
[docs] class GPR_with_posterior(GPR_deprecated): """ This is an implementation of GPR that provides a posterior() method that enables caching for faster subsequent predictions. """
[docs] def posterior( self, precompute_cache: posteriors.PrecomputeCacheType = posteriors.PrecomputeCacheType.TENSOR, ) -> posteriors.GPRPosterior: """ Create the Posterior object which contains precomputed matrices for faster prediction. precompute_cache has three settings: - `PrecomputeCacheType.TENSOR` (or `"tensor"`): Precomputes the cached quantities and stores them as tensors (which allows differentiating through the prediction). This is the default. - `PrecomputeCacheType.VARIABLE` (or `"variable"`): Precomputes the cached quantities and stores them as variables, which allows for updating their values without changing the compute graph (relevant for AOT compilation). - `PrecomputeCacheType.NOCACHE` (or `"nocache"` or `None`): Avoids immediate cache computation. This is useful for avoiding extraneous computations when you only want to call the posterior's `fused_predict_f` method. """ return posteriors.GPRPosterior( kernel=self.kernel, data=self.data, likelihood=self.likelihood, mean_function=self.mean_function, precompute_cache=precompute_cache, )
[docs] @inherit_check_shapes def predict_f( self, Xnew: InputData, full_cov: bool = False, full_output_cov: bool = False ) -> MeanAndVariance: """ For backwards compatibility, GPR's predict_f uses the fused (no-cache) computation, which is more efficient during training. For faster (cached) prediction, predict directly from the posterior object, i.e.,: model.posterior().predict_f(Xnew, ...) """ return self.posterior(posteriors.PrecomputeCacheType.NOCACHE).fused_predict_f( Xnew, full_cov=full_cov, full_output_cov=full_output_cov )
[docs] class GPR(GPR_with_posterior): # subclassed to ensure __class__ == "GPR" __doc__ = GPR_deprecated.__doc__ # Use documentation from GPR_deprecated.