Source code for gpflow.utilities.parameter_or_function

# Copyright 2022 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import tensorflow as tf
from check_shapes import check_shapes

from ..base import Parameter, TensorData, TensorType
from ..functions import Function
from . import positive

ConstantOrFunction = Union[Function, TensorData]
ParameterOrFunction = Union[Function, Parameter]


[docs] def prepare_parameter_or_function( value: ConstantOrFunction, *, lower_bound: Optional[float] = None, ) -> ParameterOrFunction: if isinstance(value, Function): return value else: if lower_bound is None: return Parameter(value) else: return Parameter(value, transform=positive(lower_bound))
[docs] @check_shapes( "X: [batch..., N, D]", "return: [broadcast batch..., broadcast N, broadcast P]", ) def evaluate_parameter_or_function( value: ParameterOrFunction, X: TensorType, *, lower_bound: Optional[float] = None, ) -> TensorType: if isinstance(value, Function): result = value(X) if lower_bound is not None: result = tf.maximum(result, lower_bound) return result else: return value