# Copyright 2022 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Decorator for checking the shapes of function using tf Tensors.
"""
import inspect
from functools import update_wrapper
from typing import Any, Callable, Sequence, cast
import tensorflow as tf
from ..utils import experimental
from .accessors import set_check_shapes
from .argument_ref import RESULT_TOKEN
from .base_types import C
from .checker import ShapeChecker
from .checker_context import set_shape_checker
from .config import get_enable_check_shapes
from .error_contexts import (
ConditionContext,
FunctionCallContext,
FunctionDefinitionContext,
NoteContext,
ParallelContext,
StackContext,
)
from .parser import parse_and_rewrite_docstring, parse_function_spec
from .specs import ParsedArgumentSpec
[docs]def null_check_shapes(func: C) -> C:
"""
Annotates the given function so that it looks like it has shape checks, but without actually
checking anything.
This is necessary not to break ``@inherit_check_shapes`` when shape checking is disabled.
"""
set_check_shapes(func, null_check_shapes)
return func
[docs]@experimental
def check_shapes(*specs: str, tf_decorator: bool = False) -> Callable[[C], C]:
"""
Decorator that checks the shapes of tensor arguments.
Example:
.. literalinclude:: /examples/test_check_shapes_examples.py
:start-after: [basic]
:end-before: [basic]
:dedent:
:param specs: Specification of arguments to check. See: `Check specification`_.
:param tf_decorator: Whether to wrap the shape check with
``tf.compat.v1.flags.tf_decorator.make_decorator``.
Setting this `True` seems to solve some problems, particularly related to Keras models,
but create some other problems, particularly related to branching on tensors.
"""
if not get_enable_check_shapes():
return null_check_shapes
unbound_error_context = FunctionCallContext(check_shapes)
func_spec = parse_function_spec(specs, unbound_error_context)
pre_specs = [spec for spec in func_spec.arguments if not spec.argument_ref.is_result]
post_specs = [spec for spec in func_spec.arguments if spec.argument_ref.is_result]
note_specs = func_spec.notes
def _check_shapes(func: C) -> C:
bound_error_context = FunctionDefinitionContext(func)
signature = inspect.signature(func)
def wrapped_function(*args: Any, **kwargs: Any) -> Any:
if not get_enable_check_shapes():
return func(*args, **kwargs)
try:
bound_arguments = signature.bind(*args, **kwargs)
except TypeError as e:
# TypeError is raised if *args and **kwargs don't actually match the arguments of
# `func`. In that case we just call `func` normally, which will also result in an
# error, but an error with the error message the user is used to.
try:
func(*args, **kwargs)
except TypeError as e2:
raise TypeError(
"Error calling wrapped function (see above error)."
" If you believe your parameters actually are correct, the error can"
" sometimes be fixed by setting `tf_decorator=True` on your `@check_shapes`"
" decorator."
) from e2
raise AssertionError(
"The above line should fail so this line should never be reached."
) from e
bound_arguments.apply_defaults()
arg_map = bound_arguments.arguments
checker = ShapeChecker()
for note_spec in note_specs:
checker.add_context(StackContext(bound_error_context, NoteContext(note_spec)))
def _check_specs(specs: Sequence[ParsedArgumentSpec]) -> None:
processed_specs = []
for arg_spec in specs:
for arg_value, relative_arg_context in arg_spec.argument_ref.get(
arg_map, bound_error_context
):
arg_context = StackContext(bound_error_context, relative_arg_context)
if arg_spec.condition is not None:
condition, condition_context = arg_spec.condition.get(
arg_map,
StackContext(arg_context, ConditionContext(arg_spec.condition)),
)
if not condition:
continue
arg_context = StackContext(
bound_error_context,
ParallelContext(
(
StackContext(
relative_arg_context,
StackContext(
ConditionContext(arg_spec.condition),
condition_context,
),
),
)
),
)
processed_specs.append((arg_value, arg_spec.tensor, arg_context))
checker.check_shapes(processed_specs)
_check_specs(pre_specs)
with set_shape_checker(checker):
result = func(*args, **kwargs)
arg_map[RESULT_TOKEN] = result
_check_specs(post_specs)
return result
# Work-around for TensorFlow saved_model expecting methods to have a `self` argument:
if "self" in signature.parameters:
def wrapped_method(self: Any, *args: Any, **kwargs: Any) -> Any:
return wrapped_function(self, *args, **kwargs)
wrapped = wrapped_method
else:
wrapped = wrapped_function
# Make TensorFlow understand our decoration:
if tf_decorator:
tf.compat.v1.flags.tf_decorator.make_decorator(func, wrapped)
update_wrapper(wrapped, func)
set_check_shapes(wrapped, _check_shapes)
wrapped.__doc__ = parse_and_rewrite_docstring(func.__doc__, func_spec, bound_error_context)
return cast(C, wrapped)
return _check_shapes