gpflow.posteriors#
Classes#
gpflow.posteriors.AbstractPosterior#
- class gpflow.posteriors.AbstractPosterior(kernel, X_data, cache=None, mean_function=None)[source]#
Bases:
Module
,ABC
- Parameters:
kernel (
Kernel
) –X_data (
Union
[Tensor
,InducingVariables
]) –cache (
Optional
[Tuple
[Tensor
,...
]]) –mean_function (
Optional
[MeanFunction
]) –
- fused_predict_f(Xnew, full_cov=False, full_output_cov=False)[source]#
Computes predictive mean and (co)variance at Xnew, including mean_function Does not make use of caching
- Parameters:
Xnew (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Xnew has shape [batch…, N, D].
full_cov (
bool
) –full_output_cov (
bool
) –
- Return type:
Tuple
[Tensor
,Tensor
]- Returns:
return[0] has shape [batch…, N, P].
return[1] has shape [batch…, N, P, N, P] if full_cov and full_output_cov.
return[1] has shape [batch…, N, P, P] if (not full_cov) and full_output_cov.
return[1] has shape [batch…, N, P] if (not full_cov) and (not full_output_cov).
return[1] has shape [batch…, P, N, N] if full_cov and (not full_output_cov).
- predict_f(Xnew, full_cov=False, full_output_cov=False)[source]#
Computes predictive mean and (co)variance at Xnew, including mean_function. Relies on precomputed alpha and Qinv (see _precompute method)
- Parameters:
Xnew (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Xnew has shape [batch…, N, D].
full_cov (
bool
) –full_output_cov (
bool
) –
- Return type:
Tuple
[Tensor
,Tensor
]- Returns:
return[0] has shape [batch…, N, P].
return[1] has shape [batch…, N, P, N, P] if full_cov and full_output_cov.
return[1] has shape [batch…, N, P, P] if (not full_cov) and full_output_cov.
return[1] has shape [batch…, N, P] if (not full_cov) and (not full_output_cov).
return[1] has shape [batch…, P, N, N] if full_cov and (not full_output_cov).
- update_cache(precompute_cache=None)[source]#
Sets the cache depending on the value of precompute_cache to a tf.Tensor, tf.Variable, or clears the cache. If precompute_cache is not given, the setting defaults to the most-recently-used one.
- Parameters:
precompute_cache (
Optional
[PrecomputeCacheType
]) –- Return type:
None
gpflow.posteriors.BasePosterior#
- class gpflow.posteriors.BasePosterior(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
AbstractPosterior
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.FallbackIndependentLatentPosterior#
- class gpflow.posteriors.FallbackIndependentLatentPosterior(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
FullyCorrelatedPosterior
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.GPRPosterior#
- class gpflow.posteriors.GPRPosterior(kernel, data, likelihood, mean_function, *, precompute_cache)[source]#
Bases:
AbstractPosterior
- Parameters:
kernel (
Kernel
) –data (
Tuple
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
],Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]]) –likelihood (
Gaussian
) –mean_function (
MeanFunction
) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.IndependentPosterior#
- class gpflow.posteriors.IndependentPosterior(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
BasePosterior
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.IndependentPosteriorMultiOutput#
- class gpflow.posteriors.IndependentPosteriorMultiOutput(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
IndependentPosterior
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.IndependentPosteriorSingleOutput#
- class gpflow.posteriors.IndependentPosteriorSingleOutput(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
IndependentPosterior
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.LinearCoregionalizationPosterior#
- class gpflow.posteriors.LinearCoregionalizationPosterior(kernel, inducing_variable, q_mu, q_sqrt, whiten=True, mean_function=None, *, precompute_cache)[source]#
Bases:
IndependentPosteriorMultiOutput
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.PrecomputeCacheType#
- class gpflow.posteriors.PrecomputeCacheType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
Enum
PrecomputeCacheType.TENSOR (or “tensor”): Precomputes the cached quantities and stores them as tensors (which allows differentiating through the prediction). This is the default.
PrecomputeCacheType.VARIABLE (or “variable”): Precomputes the cached quantities and stores them as variables, which allows for updating their values without changing the compute graph (relevant for AOT compilation).
PrecomputeCacheType.NOCACHE (or “nocache” or None): Avoids immediate cache computation. This is useful for avoiding extraneous computations when you only want to call the posterior’s fused_predict_f method.
gpflow.posteriors.PrecomputedValue#
- class gpflow.posteriors.PrecomputedValue(value, axis_dynamic)[source]#
Bases:
object
- Parameters:
value (
Tensor
) –axis_dynamic (
Tuple
[bool
,...
]) –
-
axis_dynamic:
Tuple
[bool
,...
]# A tuple with one element per dimension of value. That element is True if that dimension of value might change size.
-
value:
Tensor
# The precomputed value itself.
- static wrap_alpha_Qinv(alpha, Qinv)[source]#
Wraps alpha and Qinv in PrecomputedValues.
- Parameters:
- Return type:
Tuple
[PrecomputedValue
,...
]
gpflow.posteriors.SGPRPosterior#
- class gpflow.posteriors.SGPRPosterior(kernel, data, inducing_variable, likelihood, num_latent_gps, mean_function, *, precompute_cache)[source]#
Bases:
AbstractPosterior
This class represents posteriors which can be derived from SGPR models to compute faster predictions on unseen points.
- Parameters:
kernel (
Kernel
) –data (
Tuple
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
],Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]]) –inducing_variable (
InducingPoints
) –likelihood (
Gaussian
) –num_latent_gps (
int
) –mean_function (
MeanFunction
) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
gpflow.posteriors.VGPPosterior#
- class gpflow.posteriors.VGPPosterior(kernel, X, q_mu, q_sqrt, mean_function=None, white=True, *, precompute_cache)[source]#
Bases:
AbstractPosterior
- Parameters:
kernel (
Kernel
) –X (
Tensor
) –q_mu (
Tensor
) –q_sqrt (
Tensor
) –mean_function (
Optional
[MeanFunction
]) –white (
bool
) –precompute_cache (
Optional
[PrecomputeCacheType
]) –
Functions#
gpflow.posteriors.create_posterior#
- gpflow.posteriors.create_posterior(kernel, inducing_variable, q_mu, q_sqrt, whiten, mean_function=None, precompute_cache=PrecomputeCacheType.TENSOR)[source]#
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –q_mu (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –q_sqrt (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –whiten (
bool
) –mean_function (
Optional
[MeanFunction
]) –precompute_cache (
Union
[PrecomputeCacheType
,str
,None
]) –
- Return type:
gpflow.posteriors.get_posterior_class#
This function uses multiple dispatch, which will depend on the type of argument passed in:
gpflow.posteriors.get_posterior_class( Kernel, InducingVariables )
# dispatch to -> gpflow.posteriors._get_posterior_base_case(...)
- gpflow.posteriors._get_posterior_base_case(kernel, inducing_variable)[source]#
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –
- Return type:
Type
[BasePosterior
]
gpflow.posteriors.get_posterior_class( MultioutputKernel, InducingPoints )
# dispatch to -> gpflow.posteriors._get_posterior_fully_correlated_mo(...)
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –
- Return type:
Type
[BasePosterior
]
gpflow.posteriors.get_posterior_class( SharedIndependent, SeparateIndependentInducingVariables )
gpflow.posteriors.get_posterior_class( SeparateIndependent, SeparateIndependentInducingVariables )
gpflow.posteriors.get_posterior_class( SharedIndependent, SharedIndependentInducingVariables )
gpflow.posteriors.get_posterior_class( SeparateIndependent, SharedIndependentInducingVariables )
# dispatch to -> gpflow.posteriors._get_posterior_independent_mo(...)
- gpflow.posteriors._get_posterior_independent_mo(kernel, inducing_variable)[source]#
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –
- Return type:
Type
[BasePosterior
]
gpflow.posteriors.get_posterior_class( IndependentLatent, FallbackSeparateIndependentInducingVariables )
gpflow.posteriors.get_posterior_class( IndependentLatent, FallbackSharedIndependentInducingVariables )
# dispatch to -> gpflow.posteriors._get_posterior_independentlatent_mo_fallback(...)
- gpflow.posteriors._get_posterior_independentlatent_mo_fallback(kernel, inducing_variable)[source]#
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –
- Return type:
Type
[BasePosterior
]
gpflow.posteriors.get_posterior_class( LinearCoregionalization, SeparateIndependentInducingVariables )
gpflow.posteriors.get_posterior_class( LinearCoregionalization, SharedIndependentInducingVariables )
# dispatch to -> gpflow.posteriors._get_posterior_linearcoregionalization_mo_efficient(...)
- gpflow.posteriors._get_posterior_linearcoregionalization_mo_efficient(kernel, inducing_variable)[source]#
- Parameters:
kernel (
Kernel
) –inducing_variable (
InducingVariables
) –
- Return type:
Type
[BasePosterior
]
gpflow.posteriors.get_precomputed_value_shape#
- gpflow.posteriors.get_precomputed_value_shape(shaped, context)[source]#
- Parameters:
shaped (
PrecomputedValue
) –context (
ErrorContext
) –
- Return type:
Optional
[Tuple
[Optional
[int
],...
]]