gpflow.quadrature#
Modules#
Classes#
gpflow.quadrature.GaussianQuadrature#
- class gpflow.quadrature.GaussianQuadrature[source]#
Bases:
object
Abstract class implementing quadrature methods to compute Gaussian Expectations. Inheriting classes must provide the method _build_X_W to create points and weights to be used for quadrature.
- logspace(fun, mean, var, *args, **kwargs)[source]#
Compute the Gaussian log-Expectation of a the exponential of a function f:
X ~ N(mean, var) log E[exp[f(X)]] = log ∫exp[f(x, *args, **kwargs)]p(x)dx
Using the formula:
log E[exp[f(X)]] = log sum_{i=1}^{N_quad_points} exp[f(x_i) + log w_i]
where x_i, w_i must be provided by the inheriting class through self._build_X_W. The computations broadcast along batch-dimensions, represented by [batch…].
- Parameters:
fun (
Union
[Callable
[...
,Tensor
],Iterable
[Callable
[...
,Tensor
]]]) –Callable or Iterable of Callables that operates elementwise, with signature f(X, *args, **kwargs). Moreover, it must satisfy the shape-mapping:
X shape: [N_quad_points, batch..., d]. f(X) shape: [N_quad_points, batch..., broadcast d].
In most cases, f should only operate over the last dimension of X
mean (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –mean has shape [in_batch…, D].
Array/Tensor representing the mean of a d-Variate Gaussian distribution
var (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –var has shape [in_batch…, D].
Array/Tensor representing the variance of a d-Variate Gaussian distribution
args (
Any
) – Passed to funkwargs (
Any
) – Passed to fun
- Return type:
Tensor
- Returns:
return has shape [n_fun…, out_batch…, broadcast D].
Gaussian log-expectation of the exponential of a function f
gpflow.quadrature.NDiagGHQuadrature#
- class gpflow.quadrature.NDiagGHQuadrature(dim, n_gh)[source]#
Bases:
GaussianQuadrature
- Parameters:
dim (
int
) –n_gh (
int
) –
Functions#
gpflow.quadrature.hermgauss#
gpflow.quadrature.mvhermgauss#
- gpflow.quadrature.mvhermgauss(H, D)[source]#
Return the evaluation locations ‘xn’, and weights ‘wn’ for a multivariate Gauss-Hermite quadrature.
The outputs can be used to approximate the following type of integral: int exp(-x)*f(x) dx ~ sum_i w[i,:]*f(x[i,:])
- Parameters:
H (
int
) – Number of Gauss-Hermite evaluation points.D (
int
) – Number of input dimensions. Needs to be known at call-time.
- Return type:
Tuple
[ndarray
[Any
,Any
],ndarray
[Any
,Any
]]- Returns:
return[0] has shape [n_quad_points, D].
return[1] has shape [n_quad_points].
eval_locations ‘x’ (H**DxD), weights ‘w’ (H**D)
gpflow.quadrature.mvnquad#
- gpflow.quadrature.mvnquad(func, means, covs, H, Din=None, Dout=None)[source]#
Computes N Gaussian expectation integrals of a single function ‘f’ using Gauss-Hermite quadrature.
- Parameters:
f – integrand function. Takes one input of shape ?xD.
H (
int
) – Number of Gauss-Hermite evaluation points.Din (
Optional
[int
]) – Number of input dimensions. Needs to be known at call-time.Dout (
Optional
[Tuple
[int
,...
]]) – Number of output dimensions. Defaults to (). Dout is assumed to leave out the item index, i.e. f actually maps (?xD)->(?x*Dout).means (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –means has shape [N, Din].
covs (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –covs has shape [N, Din, Din].
func (
Callable
[[Tensor
],Tensor
]) –
- Return type:
Tensor
- Returns:
return has shape [N, Dout…].
quadratures
gpflow.quadrature.ndiag_mc#
- gpflow.quadrature.ndiag_mc(funcs, S, Fmu, Fvar, logspace=False, epsilon=None, **Ys)[source]#
Computes N Gaussian expectation integrals of one or more functions using Monte Carlo samples. The Gaussians must be independent.
Fmu, Fvar, Ys should all have same shape, with overall size N.
- Parameters:
funcs (
Union
[Callable
[...
,Tensor
],Iterable
[Callable
[...
,Tensor
]]]) – the integrand(s): Callable or Iterable of Callables that operates elementwiseS (
int
) – number of Monte Carlo sampling pointsFmu (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Fmu has shape [N, Din].
array/tensor
Fvar (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Fvar has shape [N, Din].
array/tensor
logspace (
bool
) – if True, funcs are the log-integrands and this calculates the log-expectation of exp(funcs)Ys (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Ys.values() has shape [broadcast N, .].
arrays/tensors; deterministic arguments to be passed by name
epsilon (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
,None
]) –
- Return type:
Tensor
- Returns:
return has shape [broadcast n_funs, N, P].
shape is the same as that of the first Fmu
gpflow.quadrature.ndiagquad#
- gpflow.quadrature.ndiagquad(funcs, H, Fmu, Fvar, logspace=False, **Ys)[source]#
Computes N Gaussian expectation integrals of one or more functions using Gauss-Hermite quadrature. The Gaussians must be independent.
The means and variances of the Gaussians are specified by Fmu and Fvar. The N-integrals are assumed to be taken wrt the last dimensions of Fmu, Fvar.
Fmu, Fvar, Ys should all have same shape, with overall size N.
- Parameters:
funcs (
Union
[Callable
[...
,Tensor
],Iterable
[Callable
[...
,Tensor
]]]) – the integrand(s): Callable or Iterable of Callables that operates elementwiseH (
int
) – number of Gauss-Hermite quadrature pointsFmu (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
,Tuple
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
],...
],List
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]]]) –Fmu has shape [broadcast Din, N…].
array/tensor or Din-tuple/list thereof
Fvar (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
,Tuple
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
],...
],List
[Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]]]) –Fvar has shape [broadcast Din, N…].
array/tensor or Din-tuple/list thereof
logspace (
bool
) – if True, funcs are the log-integrands and this calculates the log-expectation of exp(funcs)Ys (
Union
[ndarray
[Any
,Any
],Tensor
,Variable
,Parameter
]) –Ys.values() has shape [N…].
arrays/tensors; deterministic arguments to be passed by name
- Return type:
Tensor
- Returns:
return has shape [broadcast Dout, N…].
shape is the same as that of the first Fmu