# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Union
import numpy as np
import tensorflow as tf
from ..config import default_float
from ..inducing_variables import InducingPoints, InducingVariables
from .model import BayesianModel
from .training_mixins import Data, ExternalDataTrainingLossMixin
[docs]def inducingpoint_wrapper(
inducing_variable: Union[InducingVariables, tf.Tensor, np.ndarray]
) -> InducingVariables:
"""
This wrapper allows transparently passing either an InducingVariables
object or an array specifying InducingPoints positions.
"""
if not isinstance(inducing_variable, InducingVariables):
inducing_variable = InducingPoints(inducing_variable)
return inducing_variable
def _assert_equal_data(data1, data2):
if isinstance(data1, tf.Tensor) and isinstance(data2, tf.Tensor):
tf.debugging.assert_equal(data1, data2)
else:
for v1, v2 in zip(data1, data2):
tf.debugging.assert_equal(v1, v2)
[docs]def training_loss_closure(
model: BayesianModel, data: Data, **closure_kwargs
) -> Callable[[], tf.Tensor]:
if isinstance(model, ExternalDataTrainingLossMixin):
return model.training_loss_closure(data, **closure_kwargs)
else:
_assert_equal_data(model.data, data)
return model.training_loss_closure(**closure_kwargs)
[docs]def training_loss(model: BayesianModel, data: Data) -> tf.Tensor:
if isinstance(model, ExternalDataTrainingLossMixin):
return model.training_loss(data)
else:
_assert_equal_data(model.data, data)
return model.training_loss()
[docs]def maximum_log_likelihood_objective(model: BayesianModel, data: Data) -> tf.Tensor:
if isinstance(model, ExternalDataTrainingLossMixin):
return model.maximum_log_likelihood_objective(data)
else:
_assert_equal_data(model.data, data)
return model.maximum_log_likelihood_objective()