gpflow

gpflow.Module

class gpflow.Module(name=None)[source]

Bases: tensorflow.python.module.module.Module

Attributes
name

Returns the name of this module as passed or determined in the ctor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

Sequence of non-trainable variables owned by this module and its submodules.

parameters
submodules

Sequence of all sub-modules.

trainable_parameters
trainable_variables

Sequence of trainable variables owned by this module and its submodules.

variables

Sequence of variables owned by this module and its submodules.

Methods

with_name_scope(method)

Decorator to automatically enter the module name scope.

gpflow.Parameter

class gpflow.Parameter(value, *, transform=None, prior=None, prior_on=None, trainable=None, dtype=None, name=None, unconstrained_shape=None, constrained_shape=None, shape=None)[source]

Bases: tensorflow_probability.python.util.deferred_tensor.TransformedVariable

Attributes
also_track

Additional variables tracked by tf.Module in self.trainable_variables.

bijector
dtype

Represents the type of the elements in a Tensor.

initializer

The initializer operation for the underlying variable.

name

The string name of this object.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

Sequence of non-trainable variables owned by this module and its submodules.

pretransformed_input

Input to transform_fn.

prior_on
shape

Represents the shape of a Tensor.

submodules

Sequence of all sub-modules.

trainable

True if this instance is trainable, else False.

trainable_variables

Sequence of trainable variables owned by this module and its submodules.

transform
transform_fn

Function which characterizes the `Tensor`ization of this object.

unconstrained_variable
variables

Sequence of variables owned by this module and its submodules.

Methods

assign(value[, use_locking, name, read_value])

Assigns constrained value to the unconstrained parameter's variable.

assign_add(delta[, use_locking, name, ...])

Adds a value to this variable.

assign_sub(delta[, use_locking, name, ...])

Subtracts a value from this variable.

get_shape()

Legacy means of getting Tensor shape, for compat with 2.0.0 LinOp.

log_prior_density()

Log of the prior probability density of the constrained variable.

numpy()

Returns (copy of) deferred values as a NumPy array or scalar.

set_shape(shape)

Updates the shape of this pretransformed_input.

with_name_scope(method)

Decorator to automatically enter the module name scope.

Parameters
  • value (Union[int, float, Sequence[Any], ndarray, Tensor, Variable, Parameter]) –

  • transform (Optional[Bijector]) –

  • prior (Optional[Distribution]) –

  • prior_on (Union[str, PriorOn, None]) –

  • trainable (Optional[bool]) –

  • dtype (Union[dtype, DType, None]) –

  • name (Optional[str]) –

  • unconstrained_shape (Optional[Sequence[Optional[int]]]) –

  • constrained_shape (Optional[Sequence[Optional[int]]]) –

  • shape (Optional[Sequence[Optional[int]]]) –

assign(value, use_locking=False, name=None, read_value=True)[source]

Assigns constrained value to the unconstrained parameter’s variable. It passes constrained value through parameter’s transform first.

Example:

``` a = Parameter(2.0, transform=tfp.bijectors.Softplus()) b = Parameter(3.0)

a.assign(4.0) # a parameter to 2.0 value. a.assign(tf.constant(5.0)) # a parameter to 5.0 value. a.assign(b) # a parameter to constrained value of b. ```

Parameters
  • value (Union[int, float, Sequence[Any], ndarray, Tensor, Variable, Parameter]) – Constrained tensor-like value.

  • use_locking (bool) – If True, use locking during the assignment.

  • name (Optional[str]) – The name of the operation to be created.

  • read_value (bool) – if True, will return something which evaluates to the new value of the variable; if False will return the assign op.

Return type

Tensor

log_prior_density()[source]

Log of the prior probability density of the constrained variable.

Return type

Tensor

property trainable: bool

True if this instance is trainable, else False.

This attribute cannot be set directly. Use gpflow.set_trainable().

Return type

bool

gpflow.default_float

gpflow.default_float()[source]

Returns default float type

Return type

type

gpflow.default_int

gpflow.default_int()[source]

Returns default integer type

Return type

type

gpflow.default_jitter

gpflow.default_jitter()[source]

The jitter is a constant that GPflow adds to the diagonal of matrices to achieve numerical stability of the system when the condition number of the associated matrices is large, and therefore the matrices nearly singular.

Return type

float

gpflow.set_trainable

gpflow.set_trainable(model, flag)[source]

Set trainable flag for all tf.Variable`s and `gpflow.Parameter`s in a `tf.Module or collection of `tf.Module`s.

Parameters
  • model (Union[Module, Iterable[Module]]) –

  • flag (bool) –

Return type

None

gpflow.base

gpflow.conditionals

gpflow.config

gpflow.covariances

gpflow.expectations

gpflow.experimental

gpflow.inducing_variables

gpflow.kernels

gpflow.kullback_leiblers

gpflow.likelihoods

gpflow.logdensities

gpflow.mean_functions

gpflow.models

gpflow.monitor

gpflow.optimizers

gpflow.posteriors

gpflow.probability_distributions

gpflow.quadrature

gpflow.utilities