# Copyright 2016-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Optional, Tuple, Type, Union
import tensorflow as tf
from . import covariances, kernels, mean_functions
from .base import MeanAndVariance, Module, Parameter, RegressionData, TensorType
from .conditionals.util import (
base_conditional,
base_conditional_with_lm,
expand_independent_outputs,
fully_correlated_conditional,
independent_interdomain_conditional,
mix_latent_gp,
separate_independent_conditional_implementation,
)
from .config import default_float, default_jitter
from .covariances import Kuf, Kuu
from .inducing_variables import (
FallbackSeparateIndependentInducingVariables,
FallbackSharedIndependentInducingVariables,
InducingPoints,
InducingVariables,
SeparateIndependentInducingVariables,
SharedIndependentInducingVariables,
)
from .kernels import Kernel
from .mean_functions import MeanFunction
from .utilities import Dispatcher, add_noise_cov
from .utilities.ops import eye, leading_transpose
class _QDistribution(Module):
"""
Base class for our parametrization of q(u) in the `AbstractPosterior`.
Internal - do not rely on this outside of GPflow.
"""
class _DeltaDist(_QDistribution):
def __init__(self, q_mu: TensorType) -> None:
self.q_mu = q_mu # [M, L]
@property
def q_sqrt(self) -> Optional[tf.Tensor]:
return None
class _DiagNormal(_QDistribution):
def __init__(self, q_mu: TensorType, q_sqrt: TensorType) -> None:
self.q_mu = q_mu # [M, L]
self.q_sqrt = q_sqrt # [M, L]
class _MvNormal(_QDistribution):
def __init__(self, q_mu: TensorType, q_sqrt: TensorType) -> None:
self.q_mu = q_mu # [M, L]
self.q_sqrt = q_sqrt # [L, M, M], lower-triangular
[docs]class PrecomputeCacheType(enum.Enum):
"""
- `PrecomputeCacheType.TENSOR` (or `"tensor"`): Precomputes the cached
quantities and stores them as tensors (which allows differentiating
through the prediction). This is the default.
- `PrecomputeCacheType.VARIABLE` (or `"variable"`): Precomputes the cached
quantities and stores them as variables, which allows for updating
their values without changing the compute graph (relevant for AOT
compilation).
- `PrecomputeCacheType.NOCACHE` (or `"nocache"` or `None`): Avoids
immediate cache computation. This is useful for avoiding extraneous
computations when you only want to call the posterior's
`fused_predict_f` method.
"""
TENSOR = "tensor"
VARIABLE = "variable"
NOCACHE = "nocache"
[docs]@dataclass
class PrecomputedValue:
value: tf.Tensor
"""
The precomputed value itself.
"""
axis_dynamic: Tuple[bool, ...]
"""
A tuple with one element per dimension of `value`. That element is `True` if that dimension
of `value` might change size.
"""
def __post_init__(self) -> None:
tf.debugging.assert_rank(
self.value,
len(self.axis_dynamic),
"axis_dynamic must have one element per dimension of value.",
)
[docs] @staticmethod
def wrap_alpha_Qinv(alpha: TensorType, Qinv: TensorType) -> Tuple["PrecomputedValue", ...]:
"""
Wraps `alpha` and `Qinv` in `PrecomputedValue`s.
"""
one_dynamic = False
L_dynamic = False
M_dynamic = False # TODO(jesper): Support variable number of inducing points?
alpha_rank = tf.rank(alpha)
if alpha_rank == 2:
alpha_dynamic: Tuple[bool, ...] = (M_dynamic, L_dynamic)
elif alpha_rank == 3:
alpha_dynamic = (L_dynamic, M_dynamic, one_dynamic)
else:
raise AssertionError(f"Unknown rank of alpha {alpha_rank}.")
Qinv_rank = tf.rank(Qinv)
if Qinv_rank == 2:
Qinv_dynamic: Tuple[bool, ...] = (M_dynamic, M_dynamic)
elif Qinv_rank == 3:
Qinv_dynamic = (L_dynamic, M_dynamic, M_dynamic)
else:
raise AssertionError(f"Unknown rank of Qinv {Qinv_rank}.")
return (
PrecomputedValue(alpha, alpha_dynamic),
PrecomputedValue(Qinv, Qinv_dynamic),
)
def _validate_precompute_cache_type(
value: Union[None, PrecomputeCacheType, str]
) -> PrecomputeCacheType:
if value is None:
return PrecomputeCacheType.NOCACHE
elif isinstance(value, PrecomputeCacheType):
return value
elif isinstance(value, str):
return PrecomputeCacheType(value.lower())
else:
raise ValueError(
f"{value} is not a valid PrecomputeCacheType."
" Valid options: 'tensor', 'variable', 'nocache' (or None)."
)
[docs]class AbstractPosterior(Module, ABC):
def __init__(
self,
kernel: Kernel,
X_data: Union[tf.Tensor, InducingVariables],
cache: Optional[Tuple[tf.Tensor, ...]] = None,
mean_function: Optional[mean_functions.MeanFunction] = None,
) -> None:
"""
Users should use `create_posterior` to create instances of concrete
subclasses of this AbstractPosterior class instead of calling this
constructor directly. For `create_posterior` to be able to correctly
instantiate subclasses, developers need to ensure their subclasses
don't change the constructor signature.
"""
super().__init__()
self.kernel = kernel
self.X_data = X_data
self.cache = cache
self.mean_function = mean_function
self._precompute_cache: Optional[PrecomputeCacheType] = None
def _add_mean_function(self, Xnew: TensorType, mean: TensorType) -> tf.Tensor:
if self.mean_function is None:
return mean
else:
return mean + self.mean_function(Xnew)
@abstractmethod
def _precompute(self) -> Tuple[PrecomputedValue, ...]:
"""
Precompute a cache.
The result of this method will later be passed to `_conditional_with_precompute` as the
`cache` argument.
"""
[docs] def fused_predict_f(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, including mean_function
Does not make use of caching
"""
mean, cov = self._conditional_fused(
Xnew, full_cov=full_cov, full_output_cov=full_output_cov
)
return self._add_mean_function(Xnew, mean), cov
@abstractmethod
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, *excluding* mean_function
Does not make use of caching
"""
[docs] def predict_f(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, including mean_function.
Relies on precomputed alpha and Qinv (see _precompute method)
"""
if self.cache is None:
raise ValueError(
"Cache has not been precomputed yet. Call update_cache first or use fused_predict_f"
)
mean, cov = self._conditional_with_precompute(
self.cache, Xnew, full_cov=full_cov, full_output_cov=full_output_cov
)
return self._add_mean_function(Xnew, mean), cov
@abstractmethod
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, *excluding* mean_function.
Relies on cached alpha and Qinv.
"""
[docs] def update_cache(self, precompute_cache: Optional[PrecomputeCacheType] = None) -> None:
"""
Sets the cache depending on the value of `precompute_cache` to a
`tf.Tensor`, `tf.Variable`, or clears the cache. If `precompute_cache`
is not given, the setting defaults to the most-recently-used one.
"""
if precompute_cache is None:
if self._precompute_cache is None:
raise ValueError(
"You must pass precompute_cache explicitly"
" (the cache had not been updated before)."
)
precompute_cache = self._precompute_cache
else:
self._precompute_cache = precompute_cache
if precompute_cache is PrecomputeCacheType.NOCACHE:
self.cache = None
elif precompute_cache is PrecomputeCacheType.TENSOR:
self.cache = tuple(c.value for c in self._precompute())
elif precompute_cache is PrecomputeCacheType.VARIABLE:
cache = self._precompute()
if self.cache is not None and all(isinstance(c, tf.Variable) for c in self.cache):
# re-use existing variables
for cache_var, c in zip(self.cache, cache):
cache_var.assign(c.value)
else: # create variables
shapes = [
[None if d else s for d, s in zip(c.axis_dynamic, tf.shape(c.value))]
for c in cache
]
self.cache = tuple(
tf.Variable(c.value, trainable=False, shape=s) for c, s in zip(cache, shapes)
)
[docs]class GPRPosterior(AbstractPosterior):
def __init__(
self,
kernel: Kernel,
data: RegressionData,
likelihood_variance: Parameter,
mean_function: MeanFunction,
*,
precompute_cache: Optional[PrecomputeCacheType],
) -> None:
X, Y = data
super().__init__(kernel, X, mean_function=mean_function)
self.Y_data = Y
self.likelihood_variance = likelihood_variance
if precompute_cache is not None:
self.update_cache(precompute_cache)
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, *excluding* mean_function.
Relies on cached alpha and Qinv.
"""
(alpha,) = cache
(Qinv,) = cache
Kmn = self.kernel(self.X_data, Xnew)
# compute kernel stuff
num_func = tf.shape(self.Y_data)[-1] # R
N = tf.shape(Kmn)[-1]
# get the leading dims in Kmn to the front of the tensor Kmn
K = tf.rank(Kmn)
perm = tf.concat(
[
tf.reshape(tf.range(1, K - 1), [K - 2]), # leading dims (...)
tf.reshape(0, [1]), # [M]
tf.reshape(K - 1, [1]),
],
0,
) # [N]
Kmn = tf.transpose(Kmn, perm) # [..., M, N]
leading_dims = tf.shape(Kmn)[:-2]
# get the leading dims in Knm to the front of the tensor Knm
Knm = leading_transpose(Kmn, [..., -1, -2])
assert self.mean_function is not None
Knn = self.kernel(Xnew, full_cov=full_cov)
err = self.Y_data - self.mean_function(self.X_data)
mean = Knm @ alpha @ err
# The GPR model only has a single latent GP.
if full_cov:
cov = Knn - Knm @ Qinv @ Kmn # [..., N, N]
cov_shape = tf.concat([leading_dims, [num_func, N, N]], 0)
cov = tf.broadcast_to(tf.expand_dims(cov, -3), cov_shape) # [..., R, N, N]
else:
cov = Knn - tf.linalg.diag_part(Knm @ Qinv @ Kmn) # [..., N]
cov_shape = tf.concat([leading_dims, [num_func, N]], 0) # [..., R, N]
cov = tf.broadcast_to(tf.expand_dims(cov, -2), cov_shape) # [..., R, N]
cov = tf.linalg.adjoint(cov)
return mean, cov
def _precompute(self) -> Tuple[PrecomputedValue, ...]:
Kmm = self.kernel(self.X_data)
Kmm_plus_s = add_noise_cov(Kmm, self.likelihood_variance)
Lm = tf.linalg.cholesky(Kmm_plus_s)
Kmm_plus_s_inv = tf.linalg.cholesky_solve(
Lm, tf.eye(tf.shape(self.X_data)[0], dtype=Lm.dtype)
)
M = self.X_data.shape[0]
M_dynamic = M is None
tf.debugging.assert_shapes(
[
(Kmm_plus_s_inv, ["M", "M"]),
(Kmm, ["M", "M"]),
]
)
return (PrecomputedValue(Kmm_plus_s_inv, (M_dynamic, M_dynamic)),)
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, *excluding* mean_function
Does not make use of caching
"""
# taken directly from the deprecated GPR implementation
assert self.mean_function is not None
err = self.Y_data - self.mean_function(self.X_data)
Kmm = self.kernel(self.X_data)
Knn = self.kernel(Xnew, full_cov=full_cov)
Kmn = self.kernel(self.X_data, Xnew)
Kmm_plus_s = add_noise_cov(Kmm, self.likelihood_variance)
return base_conditional(
Kmn, Kmm_plus_s, Knn, err, full_cov=full_cov, white=False
) # [N, P], [N, P] or [P, N, N]
[docs]class SGPRPosterior(AbstractPosterior):
"""
This class represents posteriors which can be derived from SGPR
models to compute faster predictions on unseen points.
"""
def __init__(
self,
kernel: Kernel,
data: RegressionData,
inducing_variable: InducingPoints,
likelihood_variance: Parameter,
num_latent_gps: int,
mean_function: MeanFunction,
*,
precompute_cache: Optional[PrecomputeCacheType],
) -> None:
X, Y = data
super().__init__(kernel, X, mean_function=mean_function)
self.Y_data = Y
self.likelihood_variance = likelihood_variance
self.inducing_variable = inducing_variable
self.num_latent_gps = num_latent_gps
if precompute_cache is not None:
self.update_cache(precompute_cache)
def _precompute(self) -> Tuple[PrecomputedValue, ...]:
# taken directly from the deprecated SGPR implementation
num_inducing = self.inducing_variable.num_inducing
assert self.mean_function is not None
err = self.Y_data - self.mean_function(self.X_data)
kuf = Kuf(self.inducing_variable, self.kernel, self.X_data)
kuu = Kuu(self.inducing_variable, self.kernel, jitter=default_jitter())
sigma = tf.sqrt(self.likelihood_variance)
L = tf.linalg.cholesky(kuu) # cache alpha, qinv
A = tf.linalg.triangular_solve(L, kuf, lower=True) / sigma
B = tf.linalg.matmul(A, A, transpose_b=True) + tf.eye(
num_inducing, dtype=default_float()
) # cache qinv
LB = tf.linalg.cholesky(B) # cache alpha
Aerr = tf.linalg.matmul(A, err)
c = tf.linalg.triangular_solve(LB, Aerr, lower=True) / sigma # cache alpha
# get intermediate variables
Linv = tf.linalg.triangular_solve(L, tf.eye(num_inducing, dtype=default_float()))
LBinv = tf.linalg.triangular_solve(LB, tf.eye(num_inducing, dtype=default_float()))
Binv = tf.linalg.inv(B) # naive...can do better?
tmp = tf.eye(num_inducing, dtype=default_float()) - Binv
# calculate cached values
LinvT = tf.transpose(Linv)
alpha = LinvT @ tf.transpose(LBinv) @ c
Qinv = LinvT @ tmp @ Linv
return PrecomputedValue.wrap_alpha_Qinv(alpha, Qinv)
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
"""
Computes predictive mean and (co)variance at Xnew, *excluding* mean_function.
Relies on cached alpha and Qinv.
"""
alpha, Qinv = cache
Kus = Kuf(self.inducing_variable, self.kernel, Xnew)
Knn = self.kernel(Xnew, full_cov=full_cov)
Ksu = tf.transpose(Kus)
mean = Ksu @ alpha
if full_cov:
var = Knn - Ksu @ Qinv @ Kus
var = tf.tile(var[None, ...], [self.num_latent_gps, 1, 1]) # [P, N, N]
else:
Kfu_Qinv_Kuf = tf.reduce_sum(Kus * tf.matmul(Qinv, Kus), axis=-2)
var = Knn - Kfu_Qinv_Kuf
var = tf.tile(var[:, None], [1, self.num_latent_gps])
return mean, var
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
"""
Compute the mean and variance of the latent function at some new points
Xnew. Does not make use of caching
"""
# taken directly from the deprecated SGPR implementation
num_inducing = self.inducing_variable.num_inducing
assert self.mean_function is not None
err = self.Y_data - self.mean_function(self.X_data)
kuf = Kuf(self.inducing_variable, self.kernel, self.X_data)
kuu = Kuu(self.inducing_variable, self.kernel, jitter=default_jitter())
Kus = Kuf(self.inducing_variable, self.kernel, Xnew)
sigma = tf.sqrt(self.likelihood_variance)
L = tf.linalg.cholesky(kuu) # cache alpha, qinv
A = tf.linalg.triangular_solve(L, kuf, lower=True) / sigma
B = tf.linalg.matmul(A, A, transpose_b=True) + tf.eye(
num_inducing, dtype=default_float()
) # cache qinv
LB = tf.linalg.cholesky(B) # cache alpha
Aerr = tf.linalg.matmul(A, err)
c = tf.linalg.triangular_solve(LB, Aerr, lower=True) / sigma # cache alpha
tmp1 = tf.linalg.triangular_solve(L, Kus, lower=True)
tmp2 = tf.linalg.triangular_solve(LB, tmp1, lower=True)
mean = tf.linalg.matmul(tmp2, c, transpose_a=True)
if full_cov:
var = (
self.kernel(Xnew)
+ tf.linalg.matmul(tmp2, tmp2, transpose_a=True)
- tf.linalg.matmul(tmp1, tmp1, transpose_a=True)
)
var = tf.tile(var[None, ...], [self.num_latent_gps, 1, 1]) # [P, N, N]
else:
var = (
self.kernel(Xnew, full_cov=False)
+ tf.reduce_sum(tf.square(tmp2), 0)
- tf.reduce_sum(tf.square(tmp1), 0)
)
var = tf.tile(var[:, None], [1, self.num_latent_gps])
return mean, var
[docs]class VGPPosterior(AbstractPosterior):
def __init__(
self,
kernel: Kernel,
X: tf.Tensor,
q_mu: tf.Tensor,
q_sqrt: tf.Tensor,
mean_function: Optional[mean_functions.MeanFunction] = None,
white: bool = True,
*,
precompute_cache: Optional[PrecomputeCacheType],
) -> None:
super().__init__(kernel, X, mean_function=mean_function)
self.q_mu = q_mu
self.q_sqrt = q_sqrt
self.white = white
if precompute_cache is not None:
self.update_cache(precompute_cache)
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
(Lm,) = cache
Kmn = self.kernel(self.X_data, Xnew) # [M, ..., N]
Knn = self.kernel(
Xnew, full_cov=full_cov
) # [..., N] (full_cov = False) or [..., N, N] (True)
return base_conditional_with_lm(
Kmn=Kmn,
Lm=Lm,
Knn=Knn,
f=self.q_mu,
full_cov=full_cov,
q_sqrt=self.q_sqrt,
white=self.white,
)
def _precompute(self) -> Tuple[PrecomputedValue, ...]:
Kmm = self.kernel(self.X_data) + eye(
tf.shape(self.X_data)[-2], value=default_jitter(), dtype=self.X_data.dtype
) # [..., M, M]
Lm = tf.linalg.cholesky(Kmm)
M = self.X_data.shape[0]
M_dynamic = M is None
return (PrecomputedValue(Lm, (M_dynamic, M_dynamic)),)
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
temp_cache = tuple(c.value for c in self._precompute())
return self._conditional_with_precompute(temp_cache, Xnew, full_cov, full_output_cov)
[docs]class BasePosterior(AbstractPosterior):
def __init__(
self,
kernel: Kernel,
inducing_variable: InducingVariables,
q_mu: tf.Tensor,
q_sqrt: tf.Tensor,
whiten: bool = True,
mean_function: Optional[mean_functions.MeanFunction] = None,
*,
precompute_cache: Optional[PrecomputeCacheType],
):
super().__init__(kernel, inducing_variable, mean_function=mean_function)
self.whiten = whiten
self._set_qdist(q_mu, q_sqrt)
if precompute_cache is not None:
self.update_cache(precompute_cache)
@property
def q_mu(self) -> tf.Tensor:
return self._q_dist.q_mu
@property
def q_sqrt(self) -> tf.Tensor:
return self._q_dist.q_sqrt
def _set_qdist(self, q_mu: TensorType, q_sqrt: TensorType) -> tf.Tensor:
if q_sqrt is None:
self._q_dist = _DeltaDist(q_mu)
elif len(q_sqrt.shape) == 2: # q_diag
self._q_dist = _DiagNormal(q_mu, q_sqrt)
else:
self._q_dist = _MvNormal(q_mu, q_sqrt)
def _precompute(self) -> Tuple[PrecomputedValue, ...]:
Kuu = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [(R), M, M]
q_mu = self._q_dist.q_mu
if Kuu.shape.ndims == 4:
ML = tf.reduce_prod(tf.shape(Kuu)[:2])
Kuu = tf.reshape(Kuu, [ML, ML])
if Kuu.shape.ndims == 3:
q_mu = tf.linalg.adjoint(self._q_dist.q_mu)[..., None] # [..., R, M, 1]
L = tf.linalg.cholesky(Kuu)
if not self.whiten:
# alpha = Kuu⁻¹ q_mu
alpha = tf.linalg.cholesky_solve(L, q_mu)
else:
# alpha = L⁻ᵀ q_mu
alpha = tf.linalg.triangular_solve(L, q_mu, adjoint=True)
# predictive mean = Kfu alpha
# predictive variance = Kff - Kfu Qinv Kuf
# S = q_sqrt q_sqrtᵀ
I = tf.eye(tf.shape(L)[-1], dtype=L.dtype)
if isinstance(self._q_dist, _DeltaDist):
B = I
else:
if not self.whiten:
# Qinv = Kuu⁻¹ - Kuu⁻¹ S Kuu⁻¹
# = Kuu⁻¹ - L⁻ᵀ L⁻¹ S L⁻ᵀ L⁻¹
# = L⁻ᵀ (I - L⁻¹ S L⁻ᵀ) L⁻¹
# = L⁻ᵀ B L⁻¹
if isinstance(self._q_dist, _DiagNormal):
q_sqrt = tf.linalg.diag(tf.linalg.adjoint(self._q_dist.q_sqrt))
elif isinstance(self._q_dist, _MvNormal):
q_sqrt = self._q_dist.q_sqrt
Linv_qsqrt = tf.linalg.triangular_solve(L, q_sqrt)
Linv_cov_u_LinvT = tf.matmul(Linv_qsqrt, Linv_qsqrt, transpose_b=True)
else:
if isinstance(self._q_dist, _DiagNormal):
Linv_cov_u_LinvT = tf.linalg.diag(tf.linalg.adjoint(self._q_dist.q_sqrt ** 2))
elif isinstance(self._q_dist, _MvNormal):
q_sqrt = self._q_dist.q_sqrt
Linv_cov_u_LinvT = tf.matmul(q_sqrt, q_sqrt, transpose_b=True)
# Qinv = Kuu⁻¹ - L⁻ᵀ S L⁻¹
# Linv = (L⁻¹ I) = solve(L, I)
# Kinv = Linvᵀ @ Linv
B = I - Linv_cov_u_LinvT
LinvT_B = tf.linalg.triangular_solve(L, B, adjoint=True)
B_Linv = tf.linalg.adjoint(LinvT_B)
Qinv = tf.linalg.triangular_solve(L, B_Linv, adjoint=True)
M, L = tf.unstack(tf.shape(self._q_dist.q_mu), num=2)
Qinv = tf.broadcast_to(Qinv, [L, M, M])
tf.debugging.assert_shapes(
[
(Qinv, ["L", "M", "M"]),
]
)
return PrecomputedValue.wrap_alpha_Qinv(alpha, Qinv)
[docs]class IndependentPosterior(BasePosterior):
def _post_process_mean_and_cov(
self, mean: TensorType, cov: TensorType, full_cov: bool, full_output_cov: bool
) -> tf.Tensor:
return mean, expand_independent_outputs(cov, full_cov, full_output_cov)
def _get_Kff(self, Xnew: TensorType, full_cov: bool) -> tf.Tensor:
# TODO: this assumes that Xnew has shape [N, D] and no leading dims
if isinstance(self.kernel, (kernels.SeparateIndependent, kernels.IndependentLatent)):
# NOTE calling kernel(Xnew, full_cov=full_cov, full_output_cov=False) directly would
# return
# if full_cov: [P, N, N] -- this is what we want
# else: [N, P] instead of [P, N] as we get from the explicit stack below
Kff = tf.stack([k(Xnew, full_cov=full_cov) for k in self.kernel.kernels], axis=0)
elif isinstance(self.kernel, kernels.MultioutputKernel):
# effectively, SharedIndependent path
Kff = self.kernel.kernel(Xnew, full_cov=full_cov)
# NOTE calling kernel(Xnew, full_cov=full_cov, full_output_cov=False) directly would
# return
# if full_cov: [P, N, N] instead of [N, N]
# else: [N, P] instead of [N]
else:
# standard ("single-output") kernels
Kff = self.kernel(Xnew, full_cov=full_cov) # [N, N] if full_cov else [N]
return Kff
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
# Qinv: [L, M, M]
# alpha: [M, L]
alpha, Qinv = cache
Kuf = covariances.Kuf(self.X_data, self.kernel, Xnew) # [(R), M, N]
Kff = self._get_Kff(Xnew, full_cov)
mean = tf.matmul(Kuf, alpha, transpose_a=True)
if Kuf.shape.ndims == 3:
mean = tf.linalg.adjoint(tf.squeeze(mean, axis=-1))
if full_cov:
Kfu_Qinv_Kuf = tf.matmul(Kuf, Qinv @ Kuf, transpose_a=True)
cov = Kff - Kfu_Qinv_Kuf
else:
# [Aᵀ B]_ij = Aᵀ_ik B_kj = A_ki B_kj
# TODO check whether einsum is faster now?
Kfu_Qinv_Kuf = tf.reduce_sum(Kuf * tf.matmul(Qinv, Kuf), axis=-2)
cov = Kff - Kfu_Qinv_Kuf
cov = tf.linalg.adjoint(cov)
return self._post_process_mean_and_cov(mean, cov, full_cov, full_output_cov)
[docs]class IndependentPosteriorSingleOutput(IndependentPosterior):
# could almost be the same as IndependentPosteriorMultiOutput ...
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
# same as IndependentPosteriorMultiOutput, Shared~/Shared~ branch, except for following
# line:
Knn = self.kernel(Xnew, full_cov=full_cov)
Kmm = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [M, M]
Kmn = covariances.Kuf(self.X_data, self.kernel, Xnew) # [M, N]
fmean, fvar = base_conditional(
Kmn, Kmm, Knn, self.q_mu, full_cov=full_cov, q_sqrt=self.q_sqrt, white=self.whiten
) # [N, P], [P, N, N] or [N, P]
return self._post_process_mean_and_cov(fmean, fvar, full_cov, full_output_cov)
[docs]class IndependentPosteriorMultiOutput(IndependentPosterior):
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
if isinstance(self.X_data, SharedIndependentInducingVariables) and isinstance(
self.kernel, kernels.SharedIndependent
):
# same as IndependentPosteriorSingleOutput except for following line
Knn = self.kernel.kernel(Xnew, full_cov=full_cov)
# we don't call self.kernel() directly as that would do unnecessary tiling
Kmm = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [M, M]
Kmn = covariances.Kuf(self.X_data, self.kernel, Xnew) # [M, N]
fmean, fvar = base_conditional(
Kmn, Kmm, Knn, self.q_mu, full_cov=full_cov, q_sqrt=self.q_sqrt, white=self.whiten
) # [N, P], [P, N, N] or [N, P]
else:
# this is the messy thing with tf.map_fn, cleaned up by the
# st/clean_up_broadcasting_conditionals branch
# Following are: [P, M, M] - [P, M, N] - [P, N](x N)
Kmms = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [P, M, M]
Kmns = covariances.Kuf(self.X_data, self.kernel, Xnew) # [P, M, N]
if isinstance(self.kernel, kernels.Combination):
kernel_list = self.kernel.kernels
else:
kernel_list = [self.kernel.kernel] * len(self.X_data.inducing_variable_list)
Knns = tf.stack(
[k.K(Xnew) if full_cov else k.K_diag(Xnew) for k in kernel_list], axis=0
)
fmean, fvar = separate_independent_conditional_implementation(
Kmns,
Kmms,
Knns,
self.q_mu,
q_sqrt=self.q_sqrt,
full_cov=full_cov,
white=self.whiten,
)
return self._post_process_mean_and_cov(fmean, fvar, full_cov, full_output_cov)
[docs]class LinearCoregionalizationPosterior(IndependentPosteriorMultiOutput):
def _post_process_mean_and_cov(
self, mean: TensorType, cov: TensorType, full_cov: bool, full_output_cov: bool
) -> MeanAndVariance:
"""
mean: [N, L]
cov: [L, N, N] or [N, L]
"""
cov = expand_independent_outputs(cov, full_cov, full_output_cov=False)
mean, cov = mix_latent_gp(self.kernel.W, mean, cov, full_cov, full_output_cov)
return mean, cov
[docs]class FullyCorrelatedPosterior(BasePosterior):
def _conditional_with_precompute(
self,
cache: Tuple[tf.Tensor, ...],
Xnew: TensorType,
full_cov: bool = False,
full_output_cov: bool = False,
) -> MeanAndVariance:
# TODO: this assumes that Xnew has shape [N, D] and no leading dims
# Qinv: [L, M, M]
# alpha: [M, L]
alpha, Qinv = cache
Kuf = covariances.Kuf(self.X_data, self.kernel, Xnew)
assert Kuf.shape.ndims == 4
M, L, N, K = tf.unstack(tf.shape(Kuf), num=Kuf.shape.ndims, axis=0)
Kuf = tf.reshape(Kuf, (M * L, N * K))
kernel: kernels.MultioutputKernel = self.kernel
Kff = kernel(Xnew, full_cov=full_cov, full_output_cov=full_output_cov)
# full_cov=True and full_output_cov=True: [N, P, N, P]
# full_cov=True and full_output_cov=False: [P, N, N]
# full_cov=False and full_output_cov=True: [N, P, P]
# full_cov=False and full_output_cov=False: [N, P]
if full_cov == full_output_cov:
new_shape = (N * K, N * K) if full_cov else (N * K,)
Kff = tf.reshape(Kff, new_shape)
N = tf.shape(Xnew)[0]
K = tf.shape(Kuf)[-1] // N
mean = tf.matmul(Kuf, alpha, transpose_a=True)
if Kuf.shape.ndims == 3:
mean = tf.linalg.adjoint(tf.squeeze(mean, axis=-1))
if not full_cov and not full_output_cov:
# fully diagonal case in both inputs and outputs
# [Aᵀ B]_ij = Aᵀ_ik B_kj = A_ki B_kj
# TODO check whether einsum is faster now?
Kfu_Qinv_Kuf = tf.reduce_sum(Kuf * tf.matmul(Qinv, Kuf), axis=-2)
else:
Kfu_Qinv_Kuf = tf.matmul(Kuf, Qinv @ Kuf, transpose_a=True)
if not (full_cov and full_output_cov):
# diagonal in either inputs or outputs
new_shape = tf.concat([tf.shape(Kfu_Qinv_Kuf)[:-2], (N, K, N, K)], axis=0)
Kfu_Qinv_Kuf = tf.reshape(Kfu_Qinv_Kuf, new_shape)
if full_cov:
# diagonal in outputs: move outputs to end
tmp = tf.linalg.diag_part(tf.einsum("...ijkl->...ikjl", Kfu_Qinv_Kuf))
elif full_output_cov:
# diagonal in inputs: move inputs to end
tmp = tf.linalg.diag_part(tf.einsum("...ijkl->...jlik", Kfu_Qinv_Kuf))
Kfu_Qinv_Kuf = tf.einsum("...ijk->...kij", tmp) # move diagonal dim to [-3]
cov = Kff - Kfu_Qinv_Kuf
if not full_cov and not full_output_cov:
cov = tf.linalg.adjoint(cov)
mean = tf.reshape(mean, (N, K))
if full_cov == full_output_cov:
cov_shape = (N, K, N, K) if full_cov else (N, K)
else:
cov_shape = (K, N, N) if full_cov else (N, K, K)
cov = tf.reshape(cov, cov_shape)
return mean, cov
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
Kmm = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [M, L, M, L]
Kmn = covariances.Kuf(self.X_data, self.kernel, Xnew) # [M, L, N, P]
kernel: kernels.MultioutputKernel = self.kernel
Knn = kernel(
Xnew, full_cov=full_cov, full_output_cov=full_output_cov
) # [N, P](x N)x P or [N, P](x P)
M, L, N, K = tf.unstack(tf.shape(Kmn), num=Kmn.shape.ndims, axis=0)
Kmm = tf.reshape(Kmm, (M * L, M * L))
if full_cov == full_output_cov:
Kmn = tf.reshape(Kmn, (M * L, N * K))
Knn = tf.reshape(Knn, (N * K, N * K)) if full_cov else tf.reshape(Knn, (N * K,))
mean, cov = base_conditional(
Kmn, Kmm, Knn, self.q_mu, full_cov=full_cov, q_sqrt=self.q_sqrt, white=self.whiten
) # [K, 1], [1, K](x NK)
mean = tf.reshape(mean, (N, K))
cov = tf.reshape(cov, (N, K, N, K) if full_cov else (N, K))
else:
Kmn = tf.reshape(Kmn, (M * L, N, K))
mean, cov = fully_correlated_conditional(
Kmn,
Kmm,
Knn,
self.q_mu,
full_cov=full_cov,
full_output_cov=full_output_cov,
q_sqrt=self.q_sqrt,
white=self.whiten,
)
return mean, cov
[docs]class FallbackIndependentLatentPosterior(FullyCorrelatedPosterior): # XXX
def _conditional_fused(
self, Xnew: TensorType, full_cov: bool = False, full_output_cov: bool = False
) -> MeanAndVariance:
Kmm = covariances.Kuu(self.X_data, self.kernel, jitter=default_jitter()) # [L, M, M]
Kmn = covariances.Kuf(self.X_data, self.kernel, Xnew) # [M, L, N, P]
kernel: kernels.IndependentLatent = self.kernel
Knn = kernel(
Xnew, full_cov=full_cov, full_output_cov=full_output_cov
) # [N, P](x N)x P or [N, P](x P)
return independent_interdomain_conditional(
Kmn,
Kmm,
Knn,
self.q_mu,
full_cov=full_cov,
full_output_cov=full_output_cov,
q_sqrt=self.q_sqrt,
white=self.whiten,
)
get_posterior_class = Dispatcher("get_posterior_class")
[docs]@get_posterior_class.register(kernels.Kernel, InducingVariables)
def _get_posterior_base_case(
kernel: Kernel, inducing_variable: InducingVariables
) -> Type[AbstractPosterior]:
# independent single output
return IndependentPosteriorSingleOutput
[docs]@get_posterior_class.register(kernels.MultioutputKernel, InducingPoints)
def _get_posterior_fully_correlated_mo(
kernel: Kernel, inducing_variable: InducingVariables
) -> Type[AbstractPosterior]:
return FullyCorrelatedPosterior
[docs]@get_posterior_class.register(
(kernels.SharedIndependent, kernels.SeparateIndependent),
(SeparateIndependentInducingVariables, SharedIndependentInducingVariables),
)
def _get_posterior_independent_mo(
kernel: Kernel, inducing_variable: InducingVariables
) -> Type[AbstractPosterior]:
# independent multi-output
return IndependentPosteriorMultiOutput
[docs]@get_posterior_class.register(
kernels.IndependentLatent,
(FallbackSeparateIndependentInducingVariables, FallbackSharedIndependentInducingVariables),
)
def _get_posterior_independentlatent_mo_fallback(
kernel: Kernel, inducing_variable: InducingVariables
) -> Type[AbstractPosterior]:
return FallbackIndependentLatentPosterior
[docs]@get_posterior_class.register(
kernels.LinearCoregionalization,
(SeparateIndependentInducingVariables, SharedIndependentInducingVariables),
)
def _get_posterior_linearcoregionalization_mo_efficient(
kernel: Kernel, inducing_variable: InducingVariables
) -> Type[AbstractPosterior]:
# Linear mixing---efficient multi-output
return LinearCoregionalizationPosterior
[docs]def create_posterior(
kernel: Kernel,
inducing_variable: InducingVariables,
q_mu: TensorType,
q_sqrt: TensorType,
whiten: bool,
mean_function: Optional[MeanFunction] = None,
precompute_cache: Union[PrecomputeCacheType, str, None] = PrecomputeCacheType.TENSOR,
) -> AbstractPosterior:
posterior_class = get_posterior_class(kernel, inducing_variable)
precompute_cache = _validate_precompute_cache_type(precompute_cache)
return posterior_class(
kernel,
inducing_variable,
q_mu,
q_sqrt,
whiten,
mean_function,
precompute_cache=precompute_cache,
)