Source code for gpflow.conditionals.util

# Copyright 2017-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Optional, Tuple

import tensorflow as tf

from ..base import MeanAndVariance
from ..config import default_float, default_jitter
from ..utilities.ops import leading_transpose


[docs]def base_conditional( Kmn: tf.Tensor, Kmm: tf.Tensor, Knn: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: r""" Given a g1 and g2, and distribution p and q such that p(g2) = N(g2; 0, Kmm) p(g1) = N(g1; 0, Knn) p(g1 | g2) = N(g1; Knm (Kmm⁻¹) g2, Knn - Knm (Kmm⁻¹) Kmn) And q(g2) = N(g2; f, q_sqrt q_sqrtᵀ) This method computes the mean and (co)variance of q(g1) = ∫ q(g2) p(g1 | g2) :param Kmn: [M, ..., N] :param Kmm: [M, M] :param Knn: [..., N, N] or N :param f: [M, R] :param full_cov: bool :param q_sqrt: If this is a Tensor, it must have shape [R, M, M] (lower triangular) or [M, R] (diagonal) :param white: bool :return: [N, R] or [R, N, N] """ Lm = tf.linalg.cholesky(Kmm) return base_conditional_with_lm( Kmn=Kmn, Lm=Lm, Knn=Knn, f=f, full_cov=full_cov, q_sqrt=q_sqrt, white=white )
[docs]def base_conditional_with_lm( Kmn: tf.Tensor, Lm: tf.Tensor, Knn: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: r""" Has the same functionality as the `base_conditional` function, except that instead of `Kmm` this function accepts `Lm`, which is the Cholesky decomposition of `Kmm`. This allows `Lm` to be precomputed, which can improve performance. """ # compute kernel stuff num_func = tf.shape(f)[-1] # R N = tf.shape(Kmn)[-1] M = tf.shape(f)[-2] # get the leading dims in Kmn to the front of the tensor # if Kmn has rank two, i.e. [M, N], this is the identity op. K = tf.rank(Kmn) perm = tf.concat( [ tf.reshape(tf.range(1, K - 1), [K - 2]), # leading dims (...) tf.reshape(0, [1]), # [M] tf.reshape(K - 1, [1]), ], 0, ) # [N] Kmn = tf.transpose(Kmn, perm) # [..., M, N] shape_constraints = [ (Kmn, [..., "M", "N"]), (Lm, ["M", "M"]), (Knn, [..., "N", "N"] if full_cov else [..., "N"]), (f, ["M", "R"]), ] if q_sqrt is not None: shape_constraints.append( (q_sqrt, (["M", "R"] if q_sqrt.shape.ndims == 2 else ["R", "M", "M"])) ) tf.debugging.assert_shapes( shape_constraints, message="base_conditional() arguments " "[Note that this check verifies the shape of an alternative " "representation of Kmn. See the docs for the actual expected " "shape.]", ) leading_dims = tf.shape(Kmn)[:-2] # Compute the projection matrix A Lm = tf.broadcast_to(Lm, tf.concat([leading_dims, tf.shape(Lm)], 0)) # [..., M, M] A = tf.linalg.triangular_solve(Lm, Kmn, lower=True) # [..., M, N] # compute the covariance due to the conditioning if full_cov: fvar = Knn - tf.linalg.matmul(A, A, transpose_a=True) # [..., N, N] cov_shape = tf.concat([leading_dims, [num_func, N, N]], 0) fvar = tf.broadcast_to(tf.expand_dims(fvar, -3), cov_shape) # [..., R, N, N] else: fvar = Knn - tf.reduce_sum(tf.square(A), -2) # [..., N] cov_shape = tf.concat([leading_dims, [num_func, N]], 0) # [..., R, N] fvar = tf.broadcast_to(tf.expand_dims(fvar, -2), cov_shape) # [..., R, N] # another backsubstitution in the unwhitened case if not white: A = tf.linalg.triangular_solve(tf.linalg.adjoint(Lm), A, lower=False) # construct the conditional mean f_shape = tf.concat([leading_dims, [M, num_func]], 0) # [..., M, R] f = tf.broadcast_to(f, f_shape) # [..., M, R] fmean = tf.linalg.matmul(A, f, transpose_a=True) # [..., N, R] if q_sqrt is not None: q_sqrt_dims = q_sqrt.shape.ndims if q_sqrt_dims == 2: LTA = A * tf.expand_dims(tf.transpose(q_sqrt), 2) # [R, M, N] elif q_sqrt_dims == 3: L = tf.linalg.band_part(q_sqrt, -1, 0) # force lower triangle # [R, M, M] L_shape = tf.shape(L) L = tf.broadcast_to(L, tf.concat([leading_dims, L_shape], 0)) shape = tf.concat([leading_dims, [num_func, M, N]], axis=0) A_tiled = tf.broadcast_to(tf.expand_dims(A, -3), shape) LTA = tf.linalg.matmul(L, A_tiled, transpose_a=True) # [R, M, N] else: # pragma: no cover raise ValueError("Bad dimension for q_sqrt: %s" % str(q_sqrt.shape.ndims)) if full_cov: fvar = fvar + tf.linalg.matmul(LTA, LTA, transpose_a=True) # [R, N, N] else: fvar = fvar + tf.reduce_sum(tf.square(LTA), -2) # [R, N] if not full_cov: fvar = tf.linalg.adjoint(fvar) # [N, R] shape_constraints = [ (Kmn, [..., "M", "N"]), # tensor included again for N dimension (f, [..., "M", "R"]), # tensor included again for R dimension (fmean, [..., "N", "R"]), (fvar, [..., "R", "N", "N"] if full_cov else [..., "N", "R"]), ] tf.debugging.assert_shapes(shape_constraints, message="base_conditional() return values") return fmean, fvar
[docs]def sample_mvn( mean: tf.Tensor, cov: tf.Tensor, full_cov: bool, num_samples: Optional[int] = None ) -> tf.Tensor: """ Returns a sample from a D-dimensional Multivariate Normal distribution :param mean: [..., N, D] :param cov: [..., N, D] or [..., N, D, D] :param full_cov: if `True` return a "full" covariance matrix, otherwise a "diag": - "full": cov holds the full covariance matrix (without jitter) - "diag": cov holds the diagonal elements of the covariance matrix :return: sample from the MVN of shape [..., (S), N, D], S = num_samples """ shape_constraints = [ (mean, [..., "N", "D"]), (cov, [..., "N", "D", "D"] if full_cov else [..., "N", "D"]), ] tf.debugging.assert_shapes(shape_constraints, message="sample_mvn() arguments") mean_shape = tf.shape(mean) S = num_samples if num_samples is not None else 1 D = mean_shape[-1] leading_dims = mean_shape[:-2] if not full_cov: # mean: [..., N, D] and cov [..., N, D] eps_shape = tf.concat([leading_dims, [S], mean_shape[-2:]], 0) eps = tf.random.normal(eps_shape, dtype=default_float()) # [..., S, N, D] samples = mean[..., None, :, :] + tf.sqrt(cov)[..., None, :, :] * eps # [..., S, N, D] else: # mean: [..., N, D] and cov [..., N, D, D] jittermat = ( tf.eye(D, batch_shape=mean_shape[:-1], dtype=default_float()) * default_jitter() ) # [..., N, D, D] eps_shape = tf.concat([mean_shape, [S]], 0) eps = tf.random.normal(eps_shape, dtype=default_float()) # [..., N, D, S] chol = tf.linalg.cholesky(cov + jittermat) # [..., N, D, D] samples = mean[..., None] + tf.linalg.matmul(chol, eps) # [..., N, D, S] samples = leading_transpose(samples, [..., -1, -3, -2]) # [..., S, N, D] shape_constraints = [ (mean, [..., "N", "D"]), (samples, [..., "S", "N", "D"]), ] tf.debugging.assert_shapes(shape_constraints, message="sample_mvn() return values") if num_samples is None: return tf.squeeze(samples, axis=-3) # [..., N, D] return samples # [..., S, N, D]
[docs]def expand_independent_outputs(fvar: tf.Tensor, full_cov: bool, full_output_cov: bool) -> tf.Tensor: """ Reshapes fvar to the correct shape, specified by `full_cov` and `full_output_cov`. :param fvar: has shape [N, P] (full_cov = False) or [P, N, N] (full_cov = True). :return: 1. full_cov: True and full_output_cov: True fvar [N, P, N, P] 2. full_cov: True and full_output_cov: False fvar [P, N, N] 3. full_cov: False and full_output_cov: True fvar [N, P, P] 4. full_cov: False and full_output_cov: False fvar [N, P] """ if full_cov and full_output_cov: fvar = tf.linalg.diag(tf.transpose(fvar)) # [N, N, P, P] fvar = tf.transpose(fvar, [0, 2, 1, 3]) # [N, P, N, P] if not full_cov and full_output_cov: fvar = tf.linalg.diag(fvar) # [N, P, P] if full_cov and not full_output_cov: pass # [P, N, N] if not full_cov and not full_output_cov: pass # [N, P] return fvar
[docs]def independent_interdomain_conditional( Kmn: tf.Tensor, Kmm: tf.Tensor, Knn: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, full_output_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: """ The inducing outputs live in the g-space (R^L). Interdomain conditional calculation. :param Kmn: [M, L, N, P] :param Kmm: [L, M, M] :param Knn: [N, P] or [N, P, P] or [P, N, N] or [N, P, N, P] :param f: data matrix, [M, L] :param q_sqrt: [L, M, M] or [M, L] :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: [N, P] - variance: [N, P], [N, P, P], [P, N, N], [N, P, N, P] """ M, L, N, P = tf.unstack(tf.shape(Kmn), num=Kmn.shape.ndims, axis=0) shape_constraints = [ (Kmn, ["M", "L", "N", "P"]), (Kmm, ["L", "M", "M"]), (f, ["M", "L"]), ] if q_sqrt is not None: shape_constraints.append( (q_sqrt, ["M", "L"] if q_sqrt.shape.ndims == 2 else ["L", "M", "M"]) ) Lm = tf.linalg.cholesky(Kmm) # [L, M, M] # Compute the projection matrix A Kmn = tf.reshape(tf.transpose(Kmn, (1, 0, 2, 3)), (L, M, N * P)) A = tf.linalg.triangular_solve(Lm, Kmn, lower=True) # [L, M, M] \ [L, M, N*P] -> [L, M, N*P] Ar = tf.reshape(A, (L, M, N, P)) # compute the covariance due to the conditioning if full_cov and full_output_cov: fvar = Knn - tf.tensordot(Ar, Ar, [[0, 1], [0, 1]]) # [N, P, N, P] intended_cov_shape = ["N", "P", "N", "P"] elif full_cov and not full_output_cov: At = tf.reshape(tf.transpose(Ar), (P, N, M * L)) # [P, N, L] fvar = Knn - tf.linalg.matmul(At, At, transpose_b=True) # [P, N, N] intended_cov_shape = ["P", "N", "N"] elif not full_cov and full_output_cov: At = tf.reshape(tf.transpose(Ar, [2, 3, 1, 0]), (N, P, M * L)) # [N, P, L] fvar = Knn - tf.linalg.matmul(At, At, transpose_b=True) # [N, P, P] intended_cov_shape = ["N", "P", "P"] elif not full_cov and not full_output_cov: fvar = Knn - tf.reshape(tf.reduce_sum(tf.square(A), [0, 1]), (N, P)) # Knn: [N, P] intended_cov_shape = ["N", "P"] # another backsubstitution in the unwhitened case if not white: A = tf.linalg.triangular_solve( Lm, A, adjoint=True ) # [L, M, M] \ [L, M, N*P] -> [L, M, N*P] Ar = tf.reshape(A, (L, M, N, P)) fmean = tf.tensordot(Ar, f, [[1, 0], [0, 1]]) # [N, P] if q_sqrt is not None: if q_sqrt.shape.ndims == 3: Lf = tf.linalg.band_part(q_sqrt, -1, 0) # [L, M, M] LTA = tf.linalg.matmul( Lf, A, transpose_a=True ) # [L, M, M] * [L, M, P] -> [L, M, P] else: # q_sqrt [M, L] LTA = A * tf.transpose(q_sqrt)[..., None] # [L, M, P] if full_cov and full_output_cov: LTAr = tf.reshape(LTA, (L * M, N * P)) fvar = fvar + tf.reshape(tf.linalg.matmul(LTAr, LTAr, transpose_a=True), (N, P, N, P)) elif full_cov and not full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [2, 0, 1]) # [P, M, N] fvar = fvar + tf.linalg.matmul(LTAr, LTAr, transpose_a=True) # [P, N, N] elif not full_cov and full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (L * M, N, P)), [1, 0, 2]) # [N, M, P] fvar = fvar + tf.linalg.matmul(LTAr, LTAr, transpose_a=True) # [N, P, P] elif not full_cov and not full_output_cov: fvar = fvar + tf.reshape(tf.reduce_sum(tf.square(LTA), (0, 1)), (N, P)) shape_constraints.extend( [ (Knn, intended_cov_shape), (fmean, ["N", "P"]), (fvar, intended_cov_shape), ] ) tf.debugging.assert_shapes(shape_constraints, message="independent_interdomain_conditional()") return fmean, fvar
[docs]def fully_correlated_conditional( Kmn: tf.Tensor, Kmm: tf.Tensor, Knn: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, full_output_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: """ This function handles conditioning of multi-output GPs in the case where the conditioning points are all fully correlated, in both the prior and posterior. :param Kmn: [M, N, P] :param Kmm: [M, M] :param Knn: [N, P] or [N, P, N, P] :param f: data matrix, [M, 1] :param q_sqrt: [1, M, M] or [1, L] :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: [N, P] - variance: [N, P], [N, P, P], [P, N, N], [N, P, N, P] """ mean, var = fully_correlated_conditional_repeat( Kmn, Kmm, Knn, f, full_cov=full_cov, full_output_cov=full_output_cov, q_sqrt=q_sqrt, white=white, ) return tf.squeeze(mean, axis=0), tf.squeeze(var, axis=0)
[docs]def fully_correlated_conditional_repeat( Kmn: tf.Tensor, Kmm: tf.Tensor, Knn: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, full_output_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: """ This function handles conditioning of multi-output GPs in the case where the conditioning points are all fully correlated, in both the prior and posterior. Note: This conditional can handle 'repetitions' R, given in `f` and `q_sqrt`. :param Kmn: [M, N, P] :param Kmm: [M, M] :param Knn: [N, P] or [N, P, P] or [P, N, N] or [N, P, N, P] :param f: data matrix, [M, R] :param q_sqrt: [R, M, M] or [M, R] :param full_cov: calculate covariance between inputs :param full_output_cov: calculate covariance between outputs :param white: use whitened representation :return: - mean: [R, N, P] - variance: [R, N, P], [R, N, P, P], [R, P, N, N], [R, N, P, N, P] """ R = tf.shape(f)[1] M, N, P = tf.unstack(tf.shape(Kmn), num=Kmn.shape.ndims, axis=0) shape_constraints = [ (Kmn, ["M", "N", "P"]), (Kmm, ["M", "M"]), (f, ["M", "R"]), ] if q_sqrt is not None: shape_constraints.append( (q_sqrt, ["M", "R"] if q_sqrt.shape.ndims == 2 else ["R", "M", "M"]) ) Lm = tf.linalg.cholesky(Kmm) # Compute the projection matrix A # Lm: [M, M] Kmn: [M, P] Kmn = tf.reshape(Kmn, (M, N * P)) # [M, P] A = tf.linalg.triangular_solve(Lm, Kmn, lower=True) # [M, P] Ar = tf.reshape(A, (M, N, P)) # compute the covariance due to the conditioning if full_cov and full_output_cov: # fvar = Knn - tf.linalg.matmul(Ar, Ar, transpose_a=True) # [P, P], then reshape? fvar = Knn - tf.tensordot(Ar, Ar, [[0], [0]]) # [N, P, N, P] intended_cov_shape = ["N", "P", "N", "P"] elif full_cov and not full_output_cov: At = tf.transpose(Ar) # [P, N, M] fvar = Knn - tf.linalg.matmul(At, At, transpose_b=True) # [P, N, N] intended_cov_shape = ["P", "N", "N"] elif not full_cov and full_output_cov: # This transpose is annoying At = tf.transpose(Ar, [1, 0, 2]) # [N, M, P] # fvar = Knn - tf.einsum('mnk,mnl->nkl', Ar, Ar) fvar = Knn - tf.linalg.matmul(At, At, transpose_a=True) # [N, P, P] intended_cov_shape = ["N", "P", "P"] elif not full_cov and not full_output_cov: # Knn: [N, P] # Can also do this with a matmul fvar = Knn - tf.reshape(tf.reduce_sum(tf.square(A), [0]), (N, P)) intended_cov_shape = ["N", "P"] # another backsubstitution in the unwhitened case if not white: A = tf.linalg.triangular_solve(Lm, A, adjoint=True) # [M, P] # f: [M, R] fmean = tf.linalg.matmul(f, A, transpose_a=True) # [R, M] * [M, P] -> [R, P] fmean = tf.reshape(fmean, (R, N, P)) # [R, N, P] if q_sqrt is not None: Lf = tf.linalg.band_part(q_sqrt, -1, 0) # [R, M, M] if q_sqrt.shape.ndims == 3: A_tiled = tf.tile(A[None, :, :], tf.stack([R, 1, 1])) # [R, M, P] LTA = tf.linalg.matmul(Lf, A_tiled, transpose_a=True) # [R, M, P] elif q_sqrt.shape.ndims == 2: A_tiled = tf.tile(A[None, :, :], tf.stack([R, 1, 1])) # [R, M, P] LTA = Lf * A_tiled # [R, M, P] else: # pragma: no cover raise ValueError(f"Bad dimension for q_sqrt: {q_sqrt.shape.ndims}") if full_cov and full_output_cov: addvar = tf.linalg.matmul(LTA, LTA, transpose_a=True) # [R, P, P] fvar = fvar[None, :, :, :, :] + tf.reshape(addvar, (R, N, P, N, P)) elif full_cov and not full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, [R, M, N, P]), [0, 3, 1, 2]) # [R, P, M, N] addvar = tf.linalg.matmul(LTAr, LTAr, transpose_a=True) # [R, P, N, N] fvar = fvar[None, ...] + addvar # [R, P, N, N] elif not full_cov and full_output_cov: LTAr = tf.transpose(tf.reshape(LTA, (R, M, N, P)), [0, 2, 3, 1]) # [R, N, P, M] fvar = fvar[None, ...] + tf.linalg.matmul(LTAr, LTAr, transpose_b=True) # [R, N, P, P] elif not full_cov and not full_output_cov: addvar = tf.reshape(tf.reduce_sum(tf.square(LTA), axis=1), (R, N, P)) # [R, N, P] fvar = fvar[None, ...] + addvar # [R, N, P] else: fvar_shape = tf.concat([[R], tf.shape(fvar)], axis=0) fvar = tf.broadcast_to(fvar[None], fvar_shape) shape_constraints.extend( [ (Knn, intended_cov_shape), (fmean, ["R", "N", "P"]), (fvar, ["R"] + intended_cov_shape), ] ) tf.debugging.assert_shapes(shape_constraints, message="fully_correlated_conditional_repeat()") return fmean, fvar
[docs]def rollaxis_left(A: tf.Tensor, num_rolls: int) -> tf.Tensor: """Roll the tensor `A` backwards `num_rolls` times.""" assert num_rolls > 0 rank = tf.rank(A) perm = tf.concat([num_rolls + tf.range(rank - num_rolls), tf.range(num_rolls)], 0) return tf.transpose(A, perm)
[docs]def rollaxis_right(A: tf.Tensor, num_rolls: int) -> tf.Tensor: """Roll the tensor `A` forward `num_rolls` times.""" assert num_rolls > 0 rank = tf.rank(A) perm = tf.concat([rank - num_rolls + tf.range(num_rolls), tf.range(rank - num_rolls)], 0) return tf.transpose(A, perm)
[docs]def mix_latent_gp( W: tf.Tensor, g_mean: tf.Tensor, g_var: tf.Tensor, full_cov: bool, full_output_cov: bool ) -> MeanAndVariance: r"""Takes the mean and variance of an uncorrelated L-dimensional latent GP and returns the mean and the variance of the mixed GP, `f = W g`, where both f and g are GPs, with W having a shape [P, L] :param W: [P, L] :param g_mean: [..., N, L] :param g_var: [..., N, L] (full_cov = False) or [L, ..., N, N] (full_cov = True) :return: f_mean and f_var, shape depends on `full_cov` and `full_output_cov` """ shape_constraints = [ (W, ["P", "L"]), (g_mean, [..., "N", "L"]), ] if not full_cov: shape_constraints.append((g_var, [..., "N", "L"])) else: # NOTE(awav) cannot assert g_var shape here because of the inner "leading" # dimensions, see https://github.com/GPflow/GPflow/issues/1296 pass f_mean = tf.tensordot(g_mean, W, [[-1], [-1]]) # [..., N, P] if full_cov and full_output_cov: # g_var is [L, ..., N, N] # this branch is practically never taken g_var = rollaxis_left(g_var, 1) # [..., N, N, L] shape_constraints.append((g_var, [..., "N", "N", "L"])) g_var = tf.expand_dims(g_var, axis=-2) # [..., N, N, 1, L] g_var_W = g_var * W # [..., N, P, L] f_var = tf.tensordot(g_var_W, W, [[-1], [-1]]) # [..., N, N, P, P] f_var = leading_transpose(f_var, [..., -4, -2, -3, -1]) # [..., N, P, N, P] intended_cov_shape = [..., "N", "P", "N", "P"] elif full_cov and not full_output_cov: # g_var is [L, ..., N, N] # this branch is practically never taken f_var = tf.tensordot(g_var, W ** 2, [[0], [-1]]) # [..., N, N, P] f_var = leading_transpose(f_var, [..., -1, -3, -2]) # [..., P, N, N] intended_cov_shape = [..., "P", "N", "N"] elif not full_cov and full_output_cov: # g_var is [..., N, L] g_var = tf.expand_dims(g_var, axis=-2) # [..., N, 1, L] g_var_W = g_var * W # [..., N, P, L] f_var = tf.tensordot(g_var_W, W, [[-1], [-1]]) # [..., N, P, P] intended_cov_shape = [..., "N", "P", "P"] elif not full_cov and not full_output_cov: # g_var is [..., N, L] W_squared = W ** 2 # [P, L] f_var = tf.tensordot(g_var, W_squared, [[-1], [-1]]) # [..., N, P] intended_cov_shape = [..., "N", "P"] shape_constraints.extend( [ (f_mean, [..., "N", "P"]), (f_var, intended_cov_shape), ] ) tf.debugging.assert_shapes(shape_constraints, message="mix_latent_gp()") return f_mean, f_var
[docs]def separate_independent_conditional_implementation( Kmns: tf.Tensor, Kmms: tf.Tensor, Knns: tf.Tensor, f: tf.Tensor, *, full_cov: bool = False, q_sqrt: Optional[tf.Tensor] = None, white: bool = False, ) -> MeanAndVariance: """Multi-output GP with independent GP priors. Number of latent processes equals the number of outputs (L = P). The covariance matrices used to calculate the conditional have the following shape: - Kuu: [P, M, M] - Kuf: [P, M, N] - Kff: [P, N] or [P, N, N] Further reference ----------------- - See `gpflow.conditionals._conditional` for a detailed explanation of conditional in the single-output case. - See the multioutput notebook for more information about the multioutput framework. - See above for the parameters and the return value. """ fs = tf.transpose(f)[:, :, None] # [P, M, 1] # [P, 1, M, M] or [P, M, 1] base_conditional_args_to_map: Tuple[tf.Tensor, ...] single_gp_conditional: Callable[[Tuple[tf.Tensor, ...]], MeanAndVariance] if q_sqrt is not None: q_sqrts = ( tf.transpose(q_sqrt)[:, :, None] if q_sqrt.shape.ndims == 2 else q_sqrt[:, None, :, :] ) base_conditional_args_to_map = (Kmms, Kmns, Knns, fs, q_sqrts) def single_gp_conditional( t: Tuple[tf.Tensor, ...] ) -> MeanAndVariance: # pragma: no cover - tf.map_fn is invisible to codecov Kmm, Kmn, Knn, f, q_sqrt = t return base_conditional(Kmn, Kmm, Knn, f, full_cov=full_cov, q_sqrt=q_sqrt, white=white) else: base_conditional_args_to_map = (Kmms, Kmns, Knns, fs) def single_gp_conditional( t: Tuple[tf.Tensor, ...] ) -> MeanAndVariance: # pragma: no cover - tf.map_fn is invisible to codecov Kmm, Kmn, Knn, f = t return base_conditional(Kmn, Kmm, Knn, f, full_cov=full_cov, q_sqrt=q_sqrt, white=white) rmu, rvar = tf.map_fn( single_gp_conditional, base_conditional_args_to_map, (default_float(), default_float()) ) # [P, N, 1], [P, 1, N, N] or [P, N, 1] fmu = rollaxis_left(tf.squeeze(rmu, axis=-1), 1) # [N, P] if full_cov: fvar = tf.squeeze(rvar, axis=-3) # [..., 0, :, :] # [P, N, N] else: fvar = rollaxis_left(tf.squeeze(rvar, axis=-1), 1) # [N, P] return fmu, fvar