gpflow.conditionals.util¶
gpflow.conditionals.util.rollaxis_left¶
gpflow.conditionals.util.rollaxis_right¶
gpflow.conditionals.util.sample_mvn¶
- gpflow.conditionals.util.sample_mvn(mean, cov, full_cov, num_samples=None)[source]¶
Returns a sample from a D-dimensional Multivariate Normal distribution :type mean:
Tensor
:param mean: […, N, D] :type cov:Tensor
:param cov: […, N, D] or […, N, D, D] :type full_cov:bool
:param full_cov: if True return a “full” covariance matrix, otherwise a “diag”: - “full”: cov holds the full covariance matrix (without jitter) - “diag”: cov holds the diagonal elements of the covariance matrix :rtype:Tensor
:return: sample from the MVN of shape […, (S), N, D], S = num_samples- Parameters
num_samples (
Optional
[int
]) –