gpflow.conditionals.sample_conditionals#
Functions#
gpflow.conditionals.sample_conditionals.sample_mvn#
- gpflow.conditionals.sample_conditionals.sample_mvn(mean, cov, full_cov, num_samples=None)[source]#
Returns a sample from a D-dimensional Multivariate Normal distribution.
- Parameters
mean (
Tensor
) – […, N, D]cov (
Tensor
) – […, N, D] or […, N, D, D]full_cov (
bool
) – if True return a “full” covariance matrix, otherwise a “diag”: - “full”: cov holds the full covariance matrix (without jitter) - “diag”: cov holds the diagonal elements of the covariance matrixnum_samples (
Optional
[int
]) –
- Return type
Tensor
- Returns
sample from the MVN of shape […, (S), N, D], S = num_samples