gpflow.conditionals.util#

Functions#

gpflow.conditionals.util.fully_correlated_conditional_repeat#

gpflow.conditionals.util.fully_correlated_conditional_repeat(Kmn, Kmm, Knn, f, *, full_cov=False, full_output_cov=False, q_sqrt=None, white=False)[source]#

This function handles conditioning of multi-output GPs in the case where the conditioning points are all fully correlated, in both the prior and posterior. Note: This conditional can handle ‘repetitions’ R, given in f and q_sqrt.

Parameters
  • Kmn (Tensor) – [M, N, P]

  • Kmm (Tensor) – [M, M]

  • Knn (Tensor) – [N, P] or [N, P, P] or [P, N, N] or [N, P, N, P]

  • f (Tensor) – data matrix, [M, R]

  • q_sqrt (Optional[Tensor]) – [R, M, M] or [M, R]

  • full_cov (bool) – calculate covariance between inputs

  • full_output_cov (bool) – calculate covariance between outputs

  • white (bool) – use whitened representation

Return type

Tuple[Tensor, Tensor]

Returns

  • mean: [R, N, P]

  • variance: [R, N, P], [R, N, P, P], [R, P, N, N], [R, N, P, N, P]

gpflow.conditionals.util.rollaxis_left#

gpflow.conditionals.util.rollaxis_left(A, num_rolls)[source]#

Roll the tensor A backwards num_rolls times.

Parameters
  • A (Tensor) –

  • num_rolls (int) –

Return type

Tensor

gpflow.conditionals.util.rollaxis_right#

gpflow.conditionals.util.rollaxis_right(A, num_rolls)[source]#

Roll the tensor A forward num_rolls times.

Parameters
  • A (Tensor) –

  • num_rolls (int) –

Return type

Tensor