gpflow.models.gplvm#

Functions#

gpflow.models.gplvm.data_input_to_tensor#

gpflow.models.gplvm.data_input_to_tensor(structure)[source]#

Converts non-tensor elements of a structure to TensorFlow tensors retaining the structure itself.

The function doesn’t keep original element’s dtype and forcefully converts them to GPflow’s default float type.

Parameters

structure (Any) –

Return type

Any

gpflow.models.gplvm.inducingpoint_wrapper#

gpflow.models.gplvm.inducingpoint_wrapper(inducing_variable)[source]#

This wrapper allows transparently passing either an InducingVariables object or an array specifying InducingPoints positions.

Parameters

inducing_variable (Union[InducingVariables, Tensor, ndarray[Any, Any]]) –

Return type

InducingVariables

gpflow.models.gplvm.pca_reduce#

gpflow.models.gplvm.pca_reduce(X, latent_dim)[source]#

A helpful function for linearly reducing the dimensionality of the input points X to latent_dim dimensions.

Parameters
  • X (Tensor) – data array of size N (number of points) x D (dimensions)

  • latent_dim (Tensor) – Number of latent dimensions Q < D

Return type

Tensor

Returns

PCA projection array of size [N, Q].