gpflow.experimental.check_shapes.checker#
Class responsible for remembering and checking shapes.
Classes#
gpflow.experimental.check_shapes.checker.FunctionCallContext#
- class gpflow.experimental.check_shapes.checker.FunctionCallContext(func, path_and_line=None)[source]#
Bases:
gpflow.experimental.check_shapes.error_contexts.ErrorContext
An error occured inside a function that was called.
Normally print should be called from within the called function: func. If that is impossible, first call precompute from within func.
- Parameters
func (
Callable
[...
,Any
]) –path_and_line (
Optional
[str
]) –
- precompute()[source]#
Precompute the values to print.
This is useful to capture the position of the stack of the relevant call, if this object is saved for later use.
- Return type
- Returns
A new instance with precomptued values.
- print(builder)[source]#
Print this context to the given MessageBuilder.
- Parameters
builder (
MessageBuilder
) –- Return type
None
gpflow.experimental.check_shapes.checker.NoteContext#
- class gpflow.experimental.check_shapes.checker.NoteContext(note)[source]#
Bases:
gpflow.experimental.check_shapes.error_contexts.ErrorContext
An error occurred in a context where a user has added a note.
- Parameters
note (
ParsedNoteSpec
) –
- print(builder)[source]#
Print this context to the given MessageBuilder.
- Parameters
builder (
MessageBuilder
) –- Return type
None
gpflow.experimental.check_shapes.checker.ParsedDimensionSpec#
gpflow.experimental.check_shapes.checker.ParsedShapeSpec#
- class gpflow.experimental.check_shapes.checker.ParsedShapeSpec(dims)[source]#
Bases:
object
- Parameters
dims (
Tuple
[ParsedDimensionSpec
,...
]) –
gpflow.experimental.check_shapes.checker.ParsedTensorSpec#
- class gpflow.experimental.check_shapes.checker.ParsedTensorSpec(shape, note)[source]#
Bases:
object
- Parameters
shape (
ParsedShapeSpec
) –note (
Optional
[ParsedNoteSpec
]) –
gpflow.experimental.check_shapes.checker.ShapeContext#
- class gpflow.experimental.check_shapes.checker.ShapeContext(expected, actual)[source]#
Bases:
gpflow.experimental.check_shapes.error_contexts.ErrorContext
An error occurred in the context of the shapes of function arguments.
- Parameters
expected (
ParsedShapeSpec
) –actual (
Optional
[Tuple
[Optional
[int
],...
]]) –
- print(builder)[source]#
Print this context to the given MessageBuilder.
- Parameters
builder (
MessageBuilder
) –- Return type
None
gpflow.experimental.check_shapes.checker.ShapeMismatchError#
- class gpflow.experimental.check_shapes.checker.ShapeMismatchError(context)[source]#
Bases:
gpflow.experimental.check_shapes.exceptions.CheckShapesError
Error raised if a function is called with tensors of the wrong shape.
- Parameters
context (
ErrorContext
) –
gpflow.experimental.check_shapes.checker.TensorSpecContext#
- class gpflow.experimental.check_shapes.checker.TensorSpecContext(spec)[source]#
Bases:
gpflow.experimental.check_shapes.error_contexts.ErrorContext
An error occurred in the context of a tensor specification.
- Parameters
spec (
ParsedTensorSpec
) –
- print(builder)[source]#
Print this context to the given MessageBuilder.
- Parameters
builder (
MessageBuilder
) –- Return type
None
gpflow.experimental.check_shapes.checker.VariableContext#
- class gpflow.experimental.check_shapes.checker.VariableContext(variable_name)[source]#
Bases:
gpflow.experimental.check_shapes.error_contexts.ErrorContext
An error occurred in the context of a shape specification variable.
- Parameters
variable_name (
str
) –
- print(builder)[source]#
Print this context to the given MessageBuilder.
- Parameters
builder (
MessageBuilder
) –- Return type
None
gpflow.experimental.check_shapes.checker.VariableTypeError#
- class gpflow.experimental.check_shapes.checker.VariableTypeError(context)[source]#
Bases:
gpflow.experimental.check_shapes.exceptions.CheckShapesError
Error raised if a variable is used both as a rank-1 and a variable-rank variable.
- Parameters
context (
ErrorContext
) –
Functions#
gpflow.experimental.check_shapes.checker.parse_tensor_spec#
- gpflow.experimental.check_shapes.checker.parse_tensor_spec(tensor_spec, context)[source]#
Parse a check_shapes tensor specification.
- Parameters
tensor_spec (
str
) –context (
ErrorContext
) –
- Return type