gpflow.covariances¶
gpflow.covariances.Kuf¶
This function uses multiple dispatch, which will depend on the type of argument passed in:
gpflow.covariances.Kuf( InducingPoints, Kernel, object )
# dispatch to -> gpflow.covariances.kufs.Kuf_kernel_inducingpoints(...)
- gpflow.covariances.kufs.Kuf_kernel_inducingpoints(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
InducingPoints
) –kernel (
Kernel
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( Multiscale, SquaredExponential, object )
# dispatch to -> gpflow.covariances.kufs.Kuf_sqexp_multiscale(...)
- gpflow.covariances.kufs.Kuf_sqexp_multiscale(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
Multiscale
) –kernel (
SquaredExponential
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( InducingPatches, Convolutional, object )
# dispatch to -> gpflow.covariances.kufs.Kuf_conv_patch(...)
- gpflow.covariances.kufs.Kuf_conv_patch(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
InducingPatches
) –kernel (
Convolutional
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( InducingPoints, MultioutputKernel, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_generic(...)
- gpflow.covariances.multioutput.kufs.Kuf_generic(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
InducingPoints
) –kernel (
MultioutputKernel
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( SharedIndependentInducingVariables, SharedIndependent, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_shared_shared(...)
- Parameters
inducing_variable (
SharedIndependentInducingVariables
) –kernel (
SharedIndependent
) –Xnew (
Tensor
) –
- Return type
Tensor
gpflow.covariances.Kuf( SeparateIndependentInducingVariables, SharedIndependent, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_separate_shared(...)
- Parameters
inducing_variable (
SeparateIndependentInducingVariables
) –kernel (
SharedIndependent
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( SharedIndependentInducingVariables, SeparateIndependent, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_shared_separate(...)
- Parameters
inducing_variable (
SharedIndependentInducingVariables
) –kernel (
SeparateIndependent
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( SeparateIndependentInducingVariables, SeparateIndependent, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_separate_separate(...)
- gpflow.covariances.multioutput.kufs.Kuf_separate_separate(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables
) –kernel (
SeparateIndependent
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( FallbackSeparateIndependentInducingVariables, LinearCoregionalization, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization(...)
- gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables
) –kernel (
LinearCoregionalization
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( FallbackSharedIndependentInducingVariables, LinearCoregionalization, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_fallback_shared_linear_coregionalization(...)
- Parameters
inducing_variable (
FallbackSharedIndependentInducingVariables
) –kernel (
LinearCoregionalization
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( SharedIndependentInducingVariables, LinearCoregionalization, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_shared_linear_coregionalization(...)
- Parameters
inducing_variable (
SharedIndependentInducingVariables
) –kernel (
SeparateIndependent
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuf( SeparateIndependentInducingVariables, LinearCoregionalization, object )
# dispatch to -> gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization(...)
- gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables
) –kernel (
LinearCoregionalization
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.Kuu¶
This function uses multiple dispatch, which will depend on the type of argument passed in:
gpflow.covariances.Kuu( InducingPoints, Kernel )
# dispatch to -> gpflow.covariances.kuus.Kuu_kernel_inducingpoints(...)
- gpflow.covariances.kuus.Kuu_kernel_inducingpoints(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
InducingPoints
) –kernel (
Kernel
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( Multiscale, SquaredExponential )
# dispatch to -> gpflow.covariances.kuus.Kuu_sqexp_multiscale(...)
- gpflow.covariances.kuus.Kuu_sqexp_multiscale(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
Multiscale
) –kernel (
SquaredExponential
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( InducingPatches, Convolutional )
# dispatch to -> gpflow.covariances.kuus.Kuu_conv_patch(...)
- gpflow.covariances.kuus.Kuu_conv_patch(inducing_variable, kernel, jitter=0.0)[source]¶
- Parameters
inducing_variable (
InducingPatches
) –kernel (
Convolutional
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( InducingPoints, MultioutputKernel )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_generic(...)
- gpflow.covariances.multioutput.kuus.Kuu_generic(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
InducingPoints
) –kernel (
MultioutputKernel
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSharedIndependentInducingVariables, SharedIndependent )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_shared_shared(...)
- Parameters
inducing_variable (
FallbackSharedIndependentInducingVariables
) –kernel (
SharedIndependent
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSharedIndependentInducingVariables, SeparateIndependent )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_fallback_shared(...)
- Parameters
inducing_variable (
FallbackSharedIndependentInducingVariables
) –kernel (
Union
[SeparateIndependent
,IndependentLatent
]) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSharedIndependentInducingVariables, IndependentLatent )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_fallback_shared(...)
- gpflow.covariances.multioutput.kuus.Kuu_fallback_shared(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
FallbackSharedIndependentInducingVariables
) –kernel (
Union
[SeparateIndependent
,IndependentLatent
]) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSeparateIndependentInducingVariables, SharedIndependent )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_fallback_separate_shared(...)
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables
) –kernel (
SharedIndependent
) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSeparateIndependentInducingVariables, SeparateIndependent )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_fallbace_separate(...)
- gpflow.covariances.multioutput.kuus.Kuu_fallbace_separate(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables
) –kernel (
Union
[SeparateIndependent
,LinearCoregionalization
]) –jitter (
float
) –
- Return type
Tensor
gpflow.covariances.Kuu( FallbackSeparateIndependentInducingVariables, LinearCoregionalization )
# dispatch to -> gpflow.covariances.multioutput.kuus.Kuu_fallbace_separate(...)
- gpflow.covariances.multioutput.kuus.Kuu_fallbace_separate(inducing_variable, kernel, *, jitter=0.0)[source]¶
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables
) –kernel (
Union
[SeparateIndependent
,LinearCoregionalization
]) –jitter (
float
) –
- Return type
Tensor