gpflow.covariances.multioutput.kufs¶
gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization¶
- gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables
) –kernel (
LinearCoregionalization
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_generic¶
- gpflow.covariances.multioutput.kufs.Kuf_generic(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
InducingPoints
) –kernel (
MultioutputKernel
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization¶
- gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables
) –kernel (
LinearCoregionalization
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_separate_separate¶
- gpflow.covariances.multioutput.kufs.Kuf_separate_separate(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables
) –kernel (
SeparateIndependent
) –Xnew (
Union
[ndarray
,Tensor
,Variable
, Parameter]) –
- Return type
Tensor