gpflow.covariances.multioutput.kufs¶
gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization¶
- gpflow.covariances.multioutput.kufs.Kuf_fallback_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
FallbackSeparateIndependentInducingVariables) –kernel (
LinearCoregionalization) –Xnew (
Union[ndarray,Tensor,Variable, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_generic¶
- gpflow.covariances.multioutput.kufs.Kuf_generic(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
InducingPoints) –kernel (
MultioutputKernel) –Xnew (
Union[ndarray,Tensor,Variable, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization¶
- gpflow.covariances.multioutput.kufs.Kuf_separate_linear_coregionalization(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables) –kernel (
LinearCoregionalization) –Xnew (
Union[ndarray,Tensor,Variable, Parameter]) –
- Return type
Tensor
gpflow.covariances.multioutput.kufs.Kuf_separate_separate¶
- gpflow.covariances.multioutput.kufs.Kuf_separate_separate(inducing_variable, kernel, Xnew)[source]¶
- Parameters
inducing_variable (
SeparateIndependentInducingVariables) –kernel (
SeparateIndependent) –Xnew (
Union[ndarray,Tensor,Variable, Parameter]) –
- Return type
Tensor