gpflow.likelihoods¶
gpflow.likelihoods.Bernoulli¶
- class gpflow.likelihoods.Bernoulli(invlink=<function inv_probit>, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
invlink (
Callable
[[Tensor
],Tensor
]) –kwargs (
Any
) –
gpflow.likelihoods.Beta¶
- class gpflow.likelihoods.Beta(invlink=<function inv_probit>, scale=1.0, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
This uses a reparameterisation of the Beta density. We have the mean of the Beta distribution given by the transformed process:
m = invlink(f)
and a scale parameter. The familiar α, β parameters are given by
m = α / (α + β) scale = α + β
- so:
α = scale * m β = scale * (1-m)
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
invlink (
Callable
[[Tensor
],Tensor
]) –scale (
float
) –kwargs (
Any
) –
gpflow.likelihoods.Exponential¶
- class gpflow.likelihoods.Exponential(invlink=<function exp>, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
invlink (
Callable
[[Tensor
],Tensor
]) –kwargs (
Any
) –
gpflow.likelihoods.Gamma¶
- class gpflow.likelihoods.Gamma(invlink=<function exp>, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
Use the transformed GP to give the scale (inverse rate) of the Gamma
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
invlink (
Callable
[[Tensor
],Tensor
]) –kwargs (
Any
) –
gpflow.likelihoods.Gaussian¶
- class gpflow.likelihoods.Gaussian(variance=1.0, variance_lower_bound=1e-06, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
The Gaussian likelihood is appropriate where uncertainties associated with the data are believed to follow a normal distribution, with constant variance.
Very small uncertainties can lead to numerical instability during the optimization process. A lower bound of 1e-6 is therefore imposed on the likelihood variance by default.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
variance (
float
) –variance_lower_bound (
float
) –kwargs (
Any
) –
gpflow.likelihoods.GaussianMC¶
- class gpflow.likelihoods.GaussianMC(*args, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.MonteCarloLikelihood
,gpflow.likelihoods.scalar_continuous.Gaussian
Stochastic version of Gaussian likelihood for demonstration purposes only.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
args (
Any
) –kwargs (
Any
) –
gpflow.likelihoods.HeteroskedasticTFPConditional¶
- class gpflow.likelihoods.HeteroskedasticTFPConditional(distribution_class=<class 'tensorflow_probability.python.distributions.normal.Normal'>, scale_transform=None, **kwargs)[source]¶
Bases:
gpflow.likelihoods.multilatent.MultiLatentTFPConditional
Heteroskedastic Likelihood where the conditional distribution is given by a TensorFlow Probability Distribution. The loc and scale of the distribution are given by a two-dimensional multi-output GP.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
distribution_class (
Type
[Distribution
]) –scale_transform (
Optional
[Bijector
]) –kwargs (
Any
) –
gpflow.likelihoods.Likelihood¶
- class gpflow.likelihoods.Likelihood(latent_dim, observation_dim)[source]¶
Bases:
gpflow.base.Module
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
latent_dim (
Optional
[int
]) –observation_dim (
Optional
[int
]) –
- conditional_mean(F)[source]¶
The conditional mean of Y|F: [E[Y₁|F], …, E[Yₖ|F]] where K = observation_dim
- Parameters
F (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – function evaluation Tensor, with shape […, latent_dim]- Return type
Tensor
- Returns
mean […, observation_dim]
- conditional_variance(F)[source]¶
The conditional marginal variance of Y|F: [var(Y₁|F), …, var(Yₖ|F)] where K = observation_dim
- Parameters
F (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – function evaluation Tensor, with shape […, latent_dim]- Return type
Tensor
- Returns
variance […, observation_dim]
- predict_log_density(Fmu, Fvar, Y)[source]¶
Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
- i.e. if
q(F) = N(Fmu, Fvar)
and this object represents
p(y|F)
then this method computes the predictive density
log ∫ p(y=Y|F)q(F) df
- Parameters
Fmu (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – mean function evaluation Tensor, with shape […, latent_dim]Fvar (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – variance of function evaluation Tensor, with shape […, latent_dim]Y (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – observation Tensor, with shape […, observation_dim]:
- Return type
Tensor
- Returns
log predictive density, with shape […]
- predict_mean_and_var(Fmu, Fvar)[source]¶
Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
- i.e. if
q(f) = N(Fmu, Fvar)
and this object represents
p(y|f)
then this method computes the predictive mean
∫∫ y p(y|f)q(f) df dy
and the predictive variance
∫∫ y² p(y|f)q(f) df dy - [ ∫∫ y p(y|f)q(f) df dy ]²
- Parameters
- Return type
Tuple
[Tensor
,Tensor
]- Returns
mean and variance, both with shape […, observation_dim]
- variational_expectations(Fmu, Fvar, Y)[source]¶
Compute the expected log density of the data, given a Gaussian distribution for the function values,
- i.e. if
q(f) = N(Fmu, Fvar)
and this object represents
p(y|f)
then this method computes
∫ log(p(y=Y|f)) q(f) df.
This only works if the broadcasting dimension of the statistics of q(f) (mean and variance) are broadcastable with that of the data Y.
- Parameters
Fmu (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – mean function evaluation Tensor, with shape […, latent_dim]Fvar (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – variance of function evaluation Tensor, with shape […, latent_dim]Y (
Union
[ndarray
,Tensor
,Variable
,Parameter
]) – observation Tensor, with shape […, observation_dim]:
- Return type
Tensor
- Returns
expected log density of the data given q(F), with shape […]
gpflow.likelihoods.MonteCarloLikelihood¶
- class gpflow.likelihoods.MonteCarloLikelihood(*args, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.Likelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
args (
Any
) –kwargs (
Any
) –
gpflow.likelihoods.MultiClass¶
- class gpflow.likelihoods.MultiClass(num_classes, invlink=None, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.Likelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
num_classes (
int
) –invlink (
Optional
[RobustMax
]) –kwargs (
Any
) –
gpflow.likelihoods.MultiLatentLikelihood¶
- class gpflow.likelihoods.MultiLatentLikelihood(latent_dim, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.QuadratureLikelihood
A Likelihood which assumes that a single dimensional observation is driven by multiple latent GPs.
Note that this implementation does not allow for taking into account covariance between outputs.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
latent_dim (
int
) –kwargs (
Any
) –
gpflow.likelihoods.MultiLatentTFPConditional¶
- class gpflow.likelihoods.MultiLatentTFPConditional(latent_dim, conditional_distribution, **kwargs)[source]¶
Bases:
gpflow.likelihoods.multilatent.MultiLatentLikelihood
MultiLatent likelihood where the conditional distribution is given by a TensorFlow Probability Distribution.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
latent_dim (
int
) –conditional_distribution (
Callable
[...
,Distribution
]) –kwargs (
Any
) –
gpflow.likelihoods.Ordinal¶
- class gpflow.likelihoods.Ordinal(bin_edges, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
A likelihood for doing ordinal regression.
The data are integer values from 0 to k, and the user must specify (k-1) ‘bin edges’ which define the points at which the labels switch. Let the bin edges be [a₀, a₁, … aₖ₋₁], then the likelihood is
p(Y=0|F) = ɸ((a₀ - F) / σ) p(Y=1|F) = ɸ((a₁ - F) / σ) - ɸ((a₀ - F) / σ) p(Y=2|F) = ɸ((a₂ - F) / σ) - ɸ((a₁ - F) / σ) … p(Y=K|F) = 1 - ɸ((aₖ₋₁ - F) / σ)
where ɸ is the cumulative density function of a Gaussian (the inverse probit function) and σ is a parameter to be learned. A reference is:
- @article{chu2005gaussian,
title={Gaussian processes for ordinal regression}, author={Chu, Wei and Ghahramani, Zoubin}, journal={Journal of Machine Learning Research}, volume={6}, number={Jul}, pages={1019–1041}, year={2005}
}
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
bin_edges (
ndarray
) –kwargs (
Any
) –
gpflow.likelihoods.Poisson¶
- class gpflow.likelihoods.Poisson(invlink=<function exp>, binsize=1.0, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
Poisson likelihood for use with count data, where the rate is given by the (transformed) GP.
let g(.) be the inverse-link function, then this likelihood represents
p(yᵢ | fᵢ) = Poisson(yᵢ | g(fᵢ) * binsize)
Note:binsize For use in a Log Gaussian Cox process (doubly stochastic model) where the rate function of an inhomogeneous Poisson process is given by a GP. The intractable likelihood can be approximated via a Riemann sum (with bins of size ‘binsize’) and using this Poisson likelihood.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
invlink (
Callable
[[Tensor
],Tensor
]) –binsize (
float
) –kwargs (
Any
) –
gpflow.likelihoods.QuadratureLikelihood¶
- class gpflow.likelihoods.QuadratureLikelihood(latent_dim, observation_dim, *, quadrature=None)[source]¶
Bases:
gpflow.likelihoods.base.Likelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
latent_dim (
Optional
[int
]) –observation_dim (
Optional
[int
]) –quadrature (
Optional
[GaussianQuadrature
]) –
gpflow.likelihoods.RobustMax¶
- class gpflow.likelihoods.RobustMax(num_classes, epsilon=0.001, **kwargs)[source]¶
Bases:
gpflow.base.Module
This class represent a multi-class inverse-link function. Given a vector f=[f_1, f_2, … f_k], the result of the mapping is
y = [y_1 … y_k]
with
- y_i = (1-epsilon) i == argmax(f)
epsilon/(k-1) otherwise
where k is the number of classes.
- Attributes
- eps_k1
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
__call__
(F)Call self as a function.
with_name_scope
(method)Decorator to automatically enter the module name scope.
prob_is_largest
safe_sqrt
- Parameters
num_classes (
int
) –epsilon (
float
) –kwargs (
Any
) –
gpflow.likelihoods.ScalarLikelihood¶
- class gpflow.likelihoods.ScalarLikelihood(**kwargs)[source]¶
Bases:
gpflow.likelihoods.base.QuadratureLikelihood
A likelihood class that helps with scalar likelihood functions: likelihoods where each scalar latent function is associated with a single scalar observation variable.
If there are multiple latent functions, then there must be a corresponding number of data: we check for this.
The Likelihood class contains methods to compute marginal statistics of functions of the latents and the data ϕ(y,f):
variational_expectations: ϕ(y,f) = log p(y|f)
predict_log_density: ϕ(y,f) = p(y|f)
Those statistics are computed after having first marginalized the latent processes f under a multivariate normal distribution q(f) that is fully factorized.
Some univariate integrals can be done by quadrature: we implement quadrature routines for 1D integrals in this class, though they may be overwritten by inheriting classes where those integrals are available in closed form.
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
kwargs (
Any
) –
gpflow.likelihoods.Softmax¶
- class gpflow.likelihoods.Softmax(num_classes, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.MonteCarloLikelihood
The soft-max multi-class likelihood. It can only provide a stochastic Monte-Carlo estimate of the variational expectations term, but this added variance tends to be small compared to that due to mini-batching (when using the SVGP model).
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
num_classes (
int
) –kwargs (
Any
) –
gpflow.likelihoods.StudentT¶
- class gpflow.likelihoods.StudentT(scale=1.0, df=3.0, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
scale (
float
) –df (
float
) –kwargs (
Any
) –
gpflow.likelihoods.SwitchedLikelihood¶
- class gpflow.likelihoods.SwitchedLikelihood(likelihood_list, **kwargs)[source]¶
Bases:
gpflow.likelihoods.base.ScalarLikelihood
- Attributes
name
Returns the name of this module as passed or determined in the ctor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
- num_gauss_hermite_points
- parameters
submodules
Sequence of all sub-modules.
- trainable_parameters
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
variables
Sequence of variables owned by this module and its submodules.
Methods
conditional_mean
(F)The conditional mean of Y|F: [E[Y₁|F], ..., E[Yₖ|F]] where K = observation_dim
conditional_variance
(F)The conditional marginal variance of Y|F: [var(Y₁|F), ..., var(Yₖ|F)] where K = observation_dim
log_prob
(F, Y)The log probability density log p(Y|F)
predict_density
(Fmu, Fvar, Y)Deprecated: see predict_log_density
predict_log_density
(Fmu, Fvar, Y)Given a Normal distribution for the latent function, and a datum Y, compute the log predictive density of Y,
predict_mean_and_var
(Fmu, Fvar)Given a Normal distribution for the latent function, return the mean and marginal variance of Y,
variational_expectations
(Fmu, Fvar, Y)Compute the expected log density of the data, given a Gaussian distribution for the function values,
with_name_scope
(method)Decorator to automatically enter the module name scope.
- Parameters
likelihood_list (
Iterable
[ScalarLikelihood
]) –kwargs (
Any
) –